Growth and carcass quality are economically important traits in goat production. This study investigated differentially expressed genes from the caprine pituitary gland transcriptome of South African indigenous goat breeds of varying growth performances and carcass quality parameters. Tissues were harvested from the pituitary gland of three South African Boer goats and three village ecotype goats all raised under similar conditions simulating intensive commercial production systems.
View Article and Find Full Text PDFBackground: Runs of homozygosity (ROH) islands are stretches of homozygous sequence in the genome of a large proportion of individuals in a population. Algorithms for the detection of ROH depend on the similarity of haplotypes. Coverage gaps and copy number variants (CNV) may result in incorrect identification of such similarity, leading to the detection of ROH islands where none exists.
View Article and Find Full Text PDFThe HH1 haplotype on chromosome 5 is associated with a reduced conception rate and a deficit of homozygotes at the population level in Holstein cattle. The source HH1 haplotype was traced to the bull Pawnee Farm Arlinda Chief (Chief), who was born in 1962 and has sired more than 16,000 daughters. We identified a nonsense mutation in APAF1 (apoptotic protease activating factor 1;APAF1 p.
View Article and Find Full Text PDFThe slick hair coat (SLICK) is a dominantly inherited trait typically associated with tropically adapted cattle that are from Criollo descent through Spanish colonization of cattle into the New World. The trait is of interest relative to climate change, due to its association with improved thermo-tolerance and subsequent increased productivity. Previous studies localized the SLICK locus to a 4 cM region on chromosome (BTA) 20 and identified signatures of selection in this region derived from Senepol cattle.
View Article and Find Full Text PDFBackground: Copy number variation (CNV) represents another important source of genetic variation complementary to single nucleotide polymorphism (SNP). High-density SNP array data have been routinely used to detect human CNVs, many of which have significant functional effects on gene expression and human diseases. In the dairy industry, a large quantity of SNP genotyping results are becoming available and can be used for CNV discovery to understand and accelerate genetic improvement for complex traits.
View Article and Find Full Text PDFA putative causative mutation underlying a QTL was identified as a lysine to alanine non-conservative substitution at amino acid 232 of the gene encoding the acylCoA:diacylglycerol acyltransferase (DGAT1) protein. Our goal was to characterize the allelic substitution effects of this DGAT1 mutation in a large sample of Holstein bulls from North America. Statistically significant effects were identified for all of the milk production traits and somatic cell scores.
View Article and Find Full Text PDFGenomic structural variation is an important and abundant source of genetic and phenotypic variation. Here, we describe the first systematic and genome-wide analysis of copy number variations (CNVs) in modern domesticated cattle using array comparative genomic hybridization (array CGH), quantitative PCR (qPCR), and fluorescent in situ hybridization (FISH). The array CGH panel included 90 animals from 11 Bos taurus, three Bos indicus, and three composite breeds for beef, dairy, or dual purpose.
View Article and Find Full Text PDFThe Pecorans (higher ruminants) are believed to have rapidly speciated in the Mid-Eocene, resulting in five distinct extant families: Antilocapridae, Giraffidae, Moschidae, Cervidae, and Bovidae. Due to the rapid radiation, the Pecoran phylogeny has proven difficult to resolve, and 11 of the 15 possible rooted phylogenies describing ancestral relationships among the Antilocapridae, Giraffidae, Cervidae, and Bovidae have each been argued as representations of the true phylogeny. Here we demonstrate that a genome-wide single nucleotide polymorphism (SNP) genotyping platform designed for one species can be used to genotype ancient DNA from an extinct species and DNA from species diverged up to 29 million years ago and that the produced genotypes can be used to resolve the phylogeny for this rapidly radiated infraorder.
View Article and Find Full Text PDFContinued production of food in areas predicted to be most affected by climate change, such as dairy farming regions of Australia, will be a major challenge in coming decades. Along with rising temperatures and water shortages, scarcity of inputs such as high energy feeds is predicted. With the motivation of selecting cattle adapted to these changing environments, we conducted a genome wide association study to detect DNA markers (single nucleotide polymorphisms) associated with the sensitivity of milk production to environmental conditions.
View Article and Find Full Text PDFBackground: The dissection of complex traits of economic importance to the pig industry requires the availability of a significant number of genetic markers, such as single nucleotide polymorphisms (SNPs). This study was conducted to discover several hundreds of thousands of porcine SNPs using next generation sequencing technologies and use these SNPs, as well as others from different public sources, to design a high-density SNP genotyping assay.
Methodology/principal Findings: A total of 19 reduced representation libraries derived from four swine breeds (Duroc, Landrace, Large White, Pietrain) and a Wild Boar population and three restriction enzymes (AluI, HaeIII and MspI) were sequenced using Illumina's Genome Analyzer (GA).
Background: Analyses of population structure and breed diversity have provided insight into the origin and evolution of cattle. Previously, these studies have used a low density of microsatellite markers, however, with the large number of single nucleotide polymorphism markers that are now available, it is possible to perform genome wide population genetic analyses in cattle. In this study, we used a high-density panel of SNP markers to examine population structure and diversity among eight cattle breeds sampled from Bos indicus and Bos taurus.
View Article and Find Full Text PDFBackground: Bovine whole genome linkage disequilibrium maps were constructed for eight breeds of cattle. These data provide fundamental information concerning bovine genome organization which will allow the design of studies to associate genetic variation with economically important traits and also provides background information concerning the extent of long range linkage disequilibrium in cattle.
Results: Linkage disequilibrium was assessed using r2 among all pairs of syntenic markers within eight breeds of cattle from the Bos taurus and Bos indicus subspecies.
Background: Genome assemblies rely on the existence of transcript sequence to stitch together contigs, verify assembly of whole genome shotgun reads, and annotate genes. Functional genomics studies also rely on transcript sequence to create expression microarrays or interpret digital tag data produced by methods such as Serial Analysis of Gene Expression (SAGE). Transcript sequence can be predicted based on reconstruction from overlapping expressed sequence tags (EST) that are obtained by single-pass sequencing of random cDNA clones, but these reconstructions are prone to errors caused by alternative splice forms, transcripts from gene families with related sequences, and expressed pseudogenes.
View Article and Find Full Text PDF