Purpose: To evaluate the capability of longitudinal MR scans using sweep imaging with Fourier transformation (SWIFT) to detect breast cancer metastasis to the lung in mice.
Methods: Mice with breast cancer metastatic to the lung were generated by tail vein injection of MDA-MB-231-LM2 cells. Thereafter, MR imaging was performed every week using three different pulse sequences: SWIFT [echo time (TE) ∼3 μs], concurrent dephasing and excitation (CODE; TE ∼300 μs), and three-dimensional (3D) gradient echo (GRE; TE = 2.
Purpose: The limiting factor for MRI of skeletal/mineralized tissue is fast transverse relaxation. A recent advancement in MRI technology, SWIFT (Sweep Imaging with Fourier Transform), is emerging as a new approach to overcome this difficulty. Among other techniques like UTE, ZTE, and WASPI, the application of SWIFT technology has the strong potential to impact preclinical and clinical imaging, particularly in the context of primary or metastatic bone cancers because it has the added advantage of imaging water in mineralized tissues of bone allowing MRI images to be obtained of tissues previously visible only with modalities such as computed tomography (CT).
View Article and Find Full Text PDFIntroduction: Clinical dentistry is in need of noninvasive and accurate diagnostic methods to better evaluate dental pathosis. The purpose of this work was to assess the feasibility of a recently developed magnetic resonance imaging (MRI) technique, called SWeep Imaging with Fourier Transform (SWIFT), to visualize dental tissues.
Methods: Three in vitro teeth, representing a limited range of clinical conditions of interest, imaged using a 9.
We report initial results from studies using sweep imaging with Fourier transformation (SWIFT) to detect superparamagnetic iron oxide (SPIO) particle-labeled stem cells in the rat heart. In experiments performed on phantoms containing titanium balls or SPIO-labeled cells, frequency-shifted signals surrounding the paramagnetic objects produced a pileup artifact visualized by SWIFT. Total signal intensity was retained to a much greater extent by SWIFT as compared to gradient echo imaging.
View Article and Find Full Text PDFA recently introduced method called SWIFT (SWeep Imaging with Fourier Transform) is a fundamentally different approach to MRI which is particularly well suited to imaging objects with extremely fast spin-spin relaxation rates. The method exploits a frequency-swept excitation pulse and virtually simultaneous signal acquisition in a time-shared mode. Correlation of the spin system response with the excitation pulse function is used to extract the signals of interest.
View Article and Find Full Text PDFIn vivo 1H MRS is rapidly developing as a clinical tool for diagnosing and characterizing breast cancers. Many in vivo and in vitro experiments have demonstrated that alterations in concentrations of choline-containing metabolites are associated with malignant transformation. In recent years, considerable efforts have been made to evaluate the role of 1H MRS measurements of total choline-containing compounds in the management of patients with breast cancer.
View Article and Find Full Text PDFA new MRI method is described to acquire a T(2)-weighted image from a single slice in a single shot. The technique is based on rapid acquisition by sequential excitation and refocusing (RASER). RASER avoids relaxation-related blurring because the magnetization is sequentially refocused in a manner that effectively creates a series of spin echoes with a constant echo time.
View Article and Find Full Text PDFA novel fast and quiet method of magnetic resonance imaging (MRI) is introduced which creates new opportunities for imaging in medicine and materials science. The method is called SWIFT, sweep imaging with Fourier transformation. In SWIFT, time-domain signals are acquired in a time-shared manner during a swept radiofrequency excitation of the nuclear spins.
View Article and Find Full Text PDFThe complexity of biologic tissues, with multiple compartments each with its own diffusion and relaxation properties, requires complex formalisms to model water signal in most magnetic resonance imaging or magnetic resonance spectroscopy experiments. In this article, we describe a magnetic susceptibility-induced shift in the resonance frequency of extracellular water by the introduction of a gadolinium contrast agent to medium perfusing a hollow fiber bioreactor. The frequency shift of the extracellular water (+185 Hz at 9.
View Article and Find Full Text PDF