Publications by authors named "Cunye Qu"

With conventional gene expression profiling, information concerning cellular heterogeneity is often lost in the physical mixing and averaging of millions of cells. Single-cell transcriptome analysis has the potential to address these issues. However, there is a need to determine how many cells are needed to draw meaningful conclusions in each single-cell study.

View Article and Find Full Text PDF

Metastasis is the major cause of death among cancer patients, yet early detection and intervention of metastasis could significantly improve their clinical outcomes. We have sequenced and analyzed RNA (Expression) and DNA (Mutations) from the primary tumor (PT), tumor extension (TE) and lymphatic metastatic (LM) sites of patients with clear cell renal cell carcinoma (CCRCC) before treatment. Here, we report a three-nucleotide deletion near the C-region of Plk5 that is specifically associated with the lymphatic metastasis.

View Article and Find Full Text PDF

Regulatory T (Treg) cells are essential for maintenance of immune homeostasis. Here we found that hydrogen sulfide (H2S) was required for Foxp3(+) Treg cell differentiation and function and that H2S deficiency led to systemic autoimmune disease. H2S maintained expression of methylcytosine dioxygenases Tet1 and Tet2 by sulfhydrating nuclear transcription factor Y subunit beta (NFYB) to facilitate its binding to Tet1 and Tet2 promoters.

View Article and Find Full Text PDF
Article Synopsis
  • Hydrogen sulfide (H2S) is a gasotransmitter produced in the body that influences various signaling pathways in mammalian cells and is important for bone health.
  • Bone marrow mesenchymal stem cells (BMMSCs) produce H2S to promote their growth and ability to differentiate into bone-forming cells, while a lack of H2S leads to issues with this differentiation.
  • H2S deficiency affects calcium channels in cells, resulting in impaired Wnt/β-catenin signaling and contributing to conditions like osteoporosis; however, restoring H2S levels may offer a potential treatment for these bone health issues.
View Article and Find Full Text PDF

Abnormal stem cell function makes a known contribution to many malignant tumors, but the role of stem cells in benign tumors is not well understood. Here, we show that ossifying fibroma (OF) contains a stem cell population that resembles mesenchymal stem cells (OFMSCs) and is capable of generating OF-like tumor xenografts. Mechanistically, OFMSCs show enhanced TGF-β signaling that induces aberrant proliferation and deficient osteogenesis via Notch and BMP signaling pathways, respectively.

View Article and Find Full Text PDF

The generation of induced tissue-specific stem cells has been hampered by the lack of well-established methods for the maintenance of pure tissue-specific stem cells like the ones we have for embryonic stem (ES) cell cultures. Using a cocktail of cytokines and small molecules, we demonstrate that primitive neural stem (NS) cells derived from mouse ES cells and rat embryos can be maintained. Furthermore, using the same set of cytokines and small molecules, we show that induced NS (iNS) cells can be generated from rat fibroblasts by forced expression of the transcriptional factors Oct4, Sox2 and c-Myc.

View Article and Find Full Text PDF

An inflammatory microenvironment may cause organ degenerative diseases and malignant tumors. However, the precise mechanisms of inflammation-induced diseases are not fully understood. Here, we show that the proinflammatory cytokines interferon-γ (IFN-γ) and tumor necrosis factor α (TNF-α) synergistically impair self-renewal and differentiation of mesenchymal stem cells (MSCs) via nuclear factor κB (NFκB)-mediated activation of mothers against decapentaplegic homolog 7 (SMAD7) in ovariectomized (OVX) mice.

View Article and Find Full Text PDF

Bone marrow mesenchymal stem cells (MSCs) comprise a heterogeneous population of postnatal progenitor cells with profound immunomodulatory properties, such as upregulation of Foxp3(+) regulatory T cells (Tregs) and downregulation of Th17 cells. However, it is unknown whether different MSC subpopulations possess the same range of immunomodulatory function. Here, we show that a subset of single colony-derived MSCs producing IL-17 is different from bulk MSC population in that it cannot upregulate Tregs, downregulate Th17 cells, or ameliorate disease phenotypes in a colitis mouse model.

View Article and Find Full Text PDF

Systemic infusion of bone marrow mesenchymal stem cells (BMMSCs) yields therapeutic benefit for a variety of autoimmune diseases, but the underlying mechanisms are poorly understood. Here we show that in mice systemic infusion of BMMSCs induced transient T cell apoptosis via the FAS ligand (FASL)-dependent FAS pathway and could ameliorate disease phenotypes in fibrillin-1 mutated systemic sclerosis (SS) and dextran-sulfate-sodium-induced experimental colitis. FASL(-/-) BMMSCs did not induce T cell apoptosis in recipients, and could not ameliorate SS and colitis.

View Article and Find Full Text PDF

Cell sheet engineering has been developed as an alternative approach to improve mesenchymal stem cell-mediated tissue regeneration. In this study, we found that vitamin C (Vc) was capable of inducing telomerase activity in periodontal ligament stem cells (PDLSCs), leading to the up-regulated expression of extracellular matrix type I collagen, fibronectin, and integrin β1, stem cell markers Oct4, Sox2, and Nanog as well as osteogenic markers RUNX2, ALP, OCN. Under Vc treatment, PDLSCs can form cell sheet structures because of increased cell matrix production.

View Article and Find Full Text PDF

Generation of induced pluripotent stem (iPS) cells holds a great promise for regenerative medicine and other aspects of clinical applications. Many types of cells have been successfully reprogrammed into iPS cells in the mouse system; however, reprogramming human cells have been more difficult. To date, human dermal fibroblasts are the most accessible and feasible cell source for iPS generation.

View Article and Find Full Text PDF

Therapeutic monoclonal antibodies are increasingly applied in clinical application with great success. A variety of antibody products have been approved by the FDA since 1997. Furthermore, the industries have been paying more attention to and efforts in the field of antibody development than ever, suggesting the grand potential of the market and benefits.

View Article and Find Full Text PDF