Understanding and controlling carrier dynamics in two-dimensional (2D) van der Waals heterostructures through strain are crucial for their flexible applications. Here, femtosecond transient absorption spectroscopy is employed to elucidate the interlayer electron transfer and relaxation dynamics under external tensile strains in a WSe/MoS heterostructure. The results show that a modest ∼1% tensile strain can significantly alter the lifetimes of electron transfer and nonradiative electron-hole recombination by >30%.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2023
Flexible and transparent surface-enhanced Raman scattering (SERS) substrates haveattractedmuchattention as a fast, sensitive and in situ detection platform for practical applications. However, the large-area fabrication of flexible and transparent SERS substrates with high performance is still challenging. Here, a flexible and transparent SERS substrate based on large-area thin PDMS film decorated with Ag microlabyrinth/nanoparticles hierarchical structures (denoted as ALNHS@PDMS) is fabricated by using the floating-on-water method and magnetron sputtering technology.
View Article and Find Full Text PDFWith the development of flexible surface-enhanced Raman spectroscopy (SERS) substrates that can realize rapid detection, the SERS technique accompanied by miniaturized Raman spectrometers holds great promise for point-of-care testing (POCT). For an detection strategy, constructing high-performance flexible and transparent SERS substrates through a facile and cost-effective fabrication method is critically important. Herein, we present a simple method for fabricating a large-area flexible and transparent SERS substrate consisting of a silver-nanoparticle-grafted wrinkled polydimethylsiloxane (Ag NPs@W-PDMS) film, using a surface-wrinkling technique and magnetron sputtering technology.
View Article and Find Full Text PDFIn this paper, a multicomponent gas detection system based on photoacoustic spectroscopy (PAS) is proposed with a combination of frequency division multiplexing (FDM) and time division multiplexing (TDM), combining a resonance photoacoustic cell and broadband microphone. A PAS gas cell with a wide frequency response bandwidth was used to achieve the FDM by selecting a specific modulation frequency of each component gas. The sawtooth wave driver current of each laser was output at a constant time interval for achieving the TDM.
View Article and Find Full Text PDFA two-component gas sensor in quartz-enhanced photoacoustic spectroscopy based on time-division multiplexing (TDM) technology of a distributed-feedback (DFB) laser driver current was proposed and experimentally demonstrated. The quartz tuning-fork-based photoacoustic spectroscopy (PAS) cell configuration with two optical collimators and two acoustic microresonators was designed to detect the second-harmonic (${2}f$2f) PAS signal. The two optical collimators guaranteed that the two laser beams would inject the PAS cell conveniently, providing higher power input than a 3 dB optical fiber coupler.
View Article and Find Full Text PDFPlasmonic nanomaterials possessing large-volume, high-density hot spots with high field enhancement are highly desirable for ultrasensitive surface-enhanced Raman scattering (SERS) sensing. However, many as-prepared plasmonic nanomaterials are limited in available dense hot spots and in sample size, which greatly hinder their wide applications in SERS devices. Here, we develop a two-step physical deposition protocol and successfully fabricate 3D hierarchical nanostructures with highly dense hot spots across a large scale (6 × 6 cm ).
View Article and Find Full Text PDFThree-dimensional (3D) plasmonic structures have been intensively investigated as high performance surface enhanced Raman scattering (SERS) substrates. Here, we demonstrate a 3D biomimetic SERS substrate prepared by deposition of silver nanoparticles (Ag NPs) on the bioscaffold arrays of cicada wings using laser molecular beam epitaxy. This deposition method can offer a large number of nanoparticles with average diameter of ∼10 nm and nanogaps of sub-10 nm on the surface of chitin nanopillars to generate a high density of hotspots.
View Article and Find Full Text PDFThe electron momentum density and sp/sp ratio of carbon materials in the thermal transformation of detonation nanodiamonds (ND) into carbon nano-onions are systematically studied by electron energy-loss spectroscopy (EELS). Electron energy-loss near-edge structures of the carbon K-ionization in the electron energy-loss spectroscopy are measured to determine the sp content of the ND-derived samples. We use the method developed by Titantah and Lamoen, which is based on the ability to isolate the π spectrum and has been shown to give reliable and accurate results.
View Article and Find Full Text PDF