J Trace Elem Med Biol
December 2024
Background: Selenium can inhibit cervical cancers, but the specific mechanism of anti-cervical cancer is not fully understood.
Methods: In this study, we investigated the anti-cervical cancer effect of sodium selenite (SS) in vivo and in vitro to reveal the role of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway in terms of the mechanism. In vivo experiments, HeLa cell xenografts were constructed in BALB/c female nude mice, and then intraperitoneally injected with 3 mg/kg sodium selenite (SS) for 14 days.
Background: Selenium (Se) is an essential trace element for maintaining human health, with significant antioxidant and immunoregulatory functions. Inadequate Se intake may be associated with Keshan disease, Kashin-Beck disease, and hypothyroidism. However, effective indicators for scientifically guiding Se supplementation in Se-deficient populations are still lacking.
View Article and Find Full Text PDFSelenium (Se) is an essential trace element known for its significant role in maintaining human health and mitigating disease progression. Selenium and its compounds exhibit high selective cytotoxicity against tumor cells. However, their anti-cervical cancer (CC) effects and underlying mechanisms have not been fully explored.
View Article and Find Full Text PDFInformation regarding the impact of the coronavirus disease 2019 (COVID-19) pandemic on cervical cancer in mainland China is lacking. We explored its impact on the hospital attendance of patients with primary cervical cancer. We included 1918 patients with primary cervical cancer who initially attended Harbin Medical University Cancer Hospital between January 23, 2019, and January 23, 2021.
View Article and Find Full Text PDF