. Brain-machine interfaces (BMIs) aim to help people with motor disabilities by interpreting brain signals into motor intentions using advanced signal processing methods. Currently, BMI users require intensive training to perform a pre-defined task, not to mention learning a new task.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Neuroprosthesis refers to implantable medical devices which can replace injured biological functions in the brain. One of the core problems in neuroprosthesis study is to construct a neural signal transformation model from one cortical area to another. Since the brain encodes and transmits information in spike trains, spiking neural network (SNN) can be an ideal choice for neuroprosthesis modeling.
View Article and Find Full Text PDFModeling spike train transformation among brain regions helps in designing a cognitive neural prosthesis that restores lost cognitive functions. Various methods analyze the nonlinear dynamic spike train transformation between two cortical areas with low computational eficiency. The application of a real-time neural prosthesis requires computational eficiency, performance stability, and better interpretation of the neural firing patterns that modulate target spike generation.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
A neural prosthesis is designed to compensate for cognitive functional losses by modeling the information transmission among cortical areas. Existing methods generally build a generalized linear model to approximate the nonlinear transformation among two areas, and use the temporal information of the neural spike with low efficiency. It is essential to efficiently model the nonlinearity embedded in spike generation and transmission for the real-time.
View Article and Find Full Text PDFNeurons communicate nonlinearly through spike activities. Generalized linear models (GLMs) describe spike activities with a cascade of a linear combination across inputs, a static nonlinear function, and an inhomogeneous Bernoulli or Poisson process, or Cox process if a self-history term is considered. This structure considers the output nonlinearity in spike generation but excludes the nonlinear interaction among input neurons.
View Article and Find Full Text PDFPrediction of memory performance (remembered or forgotten) has various potential applications not only for knowledge learning but also for disease diagnosis. Recently, subsequent memory effects (SMEs)-the statistical differences in electroencephalography (EEG) signals before or during learning between subsequently remembered and forgotten events-have been found. This finding indicates that EEG signals convey the information relevant to memory performance.
View Article and Find Full Text PDF