The Gly-Asp-Ser-Leu (GDSL)-lipase family is a large subfamily of lipolytic enzymes that plays an important role in plant growth and defense against environmental stress. However, little is known about their function in pecans ( K. Koch).
View Article and Find Full Text PDFThe pecan is a salt-alkali-tolerant plant, and its fruit and wood have high economic value. This study aimed to explore the molecular mechanisms responsible for salt stress tolerance in the pecan grown under hydroponic conditions to simulate salt stress. The results showed that the photosynthetic rate (Pn) was reduced in response to salt stress, while the intercellular carbon dioxide concentrations (Ci) increased.
View Article and Find Full Text PDFSoil salinity is a serious abiotic stress worldwide. Pecan plants (Carya illinoensis K. Koch) have been suggested for cultivation in soils with high levels of salinity owing to their huge demand.
View Article and Find Full Text PDFPicea Schrenkiana as one of the most important zonal vegetation was an endemic species in Middle Asia. Natural regeneration of P. Schrenkiana is a long existing problem troubling scientists.
View Article and Find Full Text PDFSeasonal variations of the phytochemicals contents in needles of var. due to the effects of growth meteorological parameters were investigated in this study. The needles of var.
View Article and Find Full Text PDFIn order to explore how plant autotoxicity changes with climate warming, the autotoxicity of P. schrenkiana needles' water extract, organic extract fractions, and key allelochemical DHAP was systemically investigated at the temperature rising 2 and 4°C based on the data-monitored soil temperature during the last decade in the stage of Schrenk spruce regeneration (seed germination and seedling growth). The results showed that the criterion day and night temperatures were 12°C and 4°C for seed germination, and 14°C and 6°C for seedling growth, respectively.
View Article and Find Full Text PDFAs a candidate for bioherbicide, 4,8-dihydroxy-1-tetralone (4,8-DHT) was isolated from Caryospora callicarpa epicarp and its two enantiomers, S-(+)-isosclerone and R-(-)-regiolone, were separated by chiral high-performance liquid chromatography (HPLC) on a Chiralcel OD column with chiral stationary phase (CSP)-coated cellulose-tris(3,5-dimethylphenylcarbamate). Then, the phytotoxicity of 4,8-DHT and its enantiomers toward the seeds germination and seedling growth of the five tested plant species, including lettuce (Latuca sativa), radish (Raphanus sativus), cucumber (Cucumis sativus), onion (Allium cepa), and wheat (Triticum aestivum), were investigated and the results indicated a hormesis at low concentration of 4,8-DHT and its enantiomers, but a retardant effect at high concentration. Between the two enantiomers of 4,8-DHT, the S-(+)-isosclerone was more toxic to seeds germination and seedling growth of the five tested plant species than the R-(-)-regiolone, and also the phytotoxicity of S-(+)-isosclerone varied with different plants.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
September 2014
Aimed at providing technology for a rapid nutrition diagnosis system of micronutrients in Armeniaca vulgaris cv. Luntaibaixing, we established an element concentration estimation model for its foliar ferrum (Fe) and manganese (Mn) concentration based on spectrum analysis. The foliar spectrum reflectance at various phenological periods of fruit development under different soil fertility conditions was measured by Unispec-SC spectrometer.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
September 2012
By the methods of layered digging and image scanning analysis, this paper studied the root system spatial distribution of different aged Armeniaca vulgaris cv. Luntaibaixing in arid oasis under irrigation. The root system of A.
View Article and Find Full Text PDFBioassay-guided fractionation of the diethyl ether fraction of a water extract of Picea schrenkiana needles led to the isolation of the phenolic compound 3,4-dihydroxy- acetophenone (DHAP). The allelopathic effects of DHAP were evaluated under laboratory conditions on P. schrenkiana, rice (Oryza sativa L.
View Article and Find Full Text PDFPhenolic compounds arise from the shikimic and acetic acid (polyketide) metabolic pathways in plants. They are but one category of the many secondary metabolites implicated in plant allelopathy. Phenolic allelochemicals have been observed in both natural and managed ecosystems, where they cause a number of ecological and economic problems, such as declines in crop yield due to soil sickness, regeneration failure of natural forests, and replanting problems in orchards.
View Article and Find Full Text PDF