Publications by authors named "Cunbin Nie"

N-(4-Tert-butylphenyl)-4-(3-chloropyridin-2-yl) piperazine-1-carboxamide (BCTC) is a potent and extensively studied urea-based TRPV1 antagonist. Although BCTC was effective in alleviating chronic pain in rats, it showed obvious hyperthermia side-effect and unsatisfactory pharmacokinetic profile, therefore, it was not developed further. In order to enrich the structural types of urea-based TRPV1 antagonists, two series of novel analogs, in which the pyridine ring of BCTC was replaced with a mildly basic pyrimidine ring or 1,2,3,4-tetrahydro-β-carboline scaffold, were designed and synthesized.

View Article and Find Full Text PDF

Reported herein is the design, synthesis, and pharmacologic evaluation of a class of TRPV1 antagonists constructed on 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole as A-region and triazole as B-region. The SAR analysis indicated that 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole analogues displayed excellent antagonism of hTRPV1 activation by capsaicin and showed better potency compared to the corresponding dihydroindole analogues. Optimization of this design led to the eventual identification of 2-((1-(2-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-4-yl)methyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (6g), a potent TRPV1 antagonist.

View Article and Find Full Text PDF

Reported herein is the design, synthesis, and pharmacologic evaluation of a class of TRPV1 antagonists constructed on a N-(isoquinolin-5-yl)-N-phenylpyrrolidine-1,2-dicarboxamide platform that evolved from a 5-aminoisoquinoline urea lead. Advancing the SAR of this series led to the eventual identification of 3b, comprising a p-Br substituted phenyl. In a TRPV1 functional assay, using cells expressing recombinant human TRPV1 channels, 3b displayed potent antagonism activated by capsaicin (IC = 0.

View Article and Find Full Text PDF

Capsaicin (CAP), the prototypical TRPV1 agonist, is the major active component in chili peppers with health-promoting benefits. However, its use is limited by the low bioavailability and irritating quality. In this study, for improving the activity of CAP and alleviating its irritating effects, a series of HS-releasing CAPs were designed and synthesized by combining capsaicin and dihydro capsaicin with various hydrogen sulfide donors.

View Article and Find Full Text PDF