Publications by authors named "Cun-yu Wang"

Article Synopsis
  • KMT2D is often mutated in head and neck squamous cell carcinoma (HNSCC) but its effects on tumor growth and treatment options are largely unclear.
  • KMT2D deficiency promotes tumor growth by enhancing glycolysis and suppressing genes linked to the Fanconi Anemia/BRCA DNA repair pathway, particularly under conditions of glycolytic inhibition.
  • Combining glycolysis inhibitors with DNA damage agents shows promise in effectively targeting tumors with KMT2D mutations, indicating potential for new targeted therapies for HNSCC patients with these mutations.
View Article and Find Full Text PDF

The aim of this study was to examine the expression of programmed death-ligand 1 (PD-L1) and of T cell immunoglobulin and mucin domain-containing protein (TIM3) in oral epithelial dysplasia and head and neck squamous cell carcinoma (HNSCC). Mouse HNSCC was induced with 4-nitroquinoline-1 oxide (4NQO). Oral epithelial dysplastic lesions, carcinoma in situ and HNSCC lesions were stained with anti-PD-L1 and TIM3 antibodies.

View Article and Find Full Text PDF

The oral squamous cell carcinoma (OSCC) 5 year survival rate of 41% has marginally improved in the last few years, with less than a 1% improvement per year from 2005 to 2017, with higher survival rates when detected at early stages. Based on histopathological grading of oral dysplasia, it is estimated that severe dysplasia has a malignant transformation rate of 7%-50%. Despite these numbers, oral dysplasia grading does not reliably predict its clinical behavior.

View Article and Find Full Text PDF

Nerve growth factor (NGF) is the best-characterized neurotrophin and is primarily recognized for its key role in the embryonic development of the nervous system and neuronal cell survival/differentiation. Recently, unexpected actions of NGF in bone regeneration have emerged as NGF is able to enhance the osteogenic differentiation of mesenchymal stem cells. However, little is known regarding how NGF signaling regulates osteogenic differentiation through epigenetic mechanisms.

View Article and Find Full Text PDF

Aging of craniofacial skeleton significantly impairs the repair and regeneration of trauma-induced bony defects, and complicates dental treatment outcomes. Age-related alveolar bone loss could be attributed to decreased progenitor pool through senescence, imbalance in bone metabolism and bone-fat ratio. Mesenchymal stem cells isolated from oral bones (OMSCs) have distinct lineage propensities and characteristics compared to MSCs from long bones, and are more suited for craniofacial regeneration.

View Article and Find Full Text PDF

Periodontitis and osteoporosis are prevalent inflammation-associated skeletal disorders that pose significant public health challenges to our aging population. Both periodontitis and osteoporosis are bone disorders closely associated with inflammation and aging. There has been consistent intrigue on whether a systemic skeletal disease such as osteoporosis will amplify the alveolar bone loss in periodontitis.

View Article and Find Full Text PDF

Osteoporosis is a highly prevalent public health burden associated with an increased risk of bone fracture, particularly in aging women. Estrogen, an important medicinal component for the preventative and therapeutic treatment of postmenopausal osteoporosis, induces osteogenesis by activating the estrogen receptor signaling pathway and upregulating the expression of osteogenic genes, such as bone morphogenetic proteins (BMPs). The epigenetic regulation of estrogen-mediated osteogenesis, however, is still unclear.

View Article and Find Full Text PDF

RNA sequencing (RNAseq) can reveal gene fusions, splicing variants, mutations/indels in addition to differential gene expression, thus providing a more complete genetic picture than DNA sequencing. This most widely used technology in genomics tool box has evolved from classic bulk RNA sequencing (RNAseq), popular single cell RNA sequencing (scRNAseq) to newly emerged spatial RNA sequencing (spRNAseq). Bulk RNAseq studies average global gene expression, scRNAseq investigates single cell RNA biology up to 20,000 individual cells simultaneously, while spRNAseq has ability to dissect RNA activities spatially, representing next generation of RNA sequencing.

View Article and Find Full Text PDF

Head and neck squamous cell carcinoma (HNSCC), an aggressive malignancy, is characterized by high morbidity and low survival rates with limited therapeutic options outside of regional surgery, conventional cytotoxic chemotherapy, and irradiation. Increasing studies have supported the synergistic role of the tumor microenvironment (TME) in cancer advancement. The immune system, in particular, plays a key role in surveillance against the initiation, development, and progression of HNSCC.

View Article and Find Full Text PDF

Growth-factor-free bone regeneration remains a challenge in craniofacial engineering. Here, we engineered an osteogenic niche composed of a commercially modified alginate hydrogel and whitlockite microparticles (WHMPs), which impart tunable physicochemical properties that can direct osteogenesis of human gingival mesenchymal stem cells (GMSCs). Our studies demonstrate that WHMPs induce osteogenesis of GMSCs more effectively than previously demonstrated hydroxyapatite microparticles (HApMPs).

View Article and Find Full Text PDF

Cancer stemness and immune evasion are closely associated, and play critical roles in tumor development and resistance to immunotherapy. However, little is known about the underlying molecular mechanisms that coordinate this association. Here, it is reported that elevated circular RNA FAT1 (circFAT1) in squamous cell carcinoma (SCC) unifies and regulates the positive association between cancer stemness and immune evasion by promoting STAT3 activation.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) play a critical role in invasive growth and metastasis of human head and neck squamous cell carcinoma (HNSCC). Although significant progress has been made in understanding the self-renewal and pro-tumorigenic potentials of CSCs, a key challenge remains on how to eliminate CSCs and halt metastasis effectively. Here we show that super-enhancers (SEs) play a critical role in the transcription of cancer stemness genes as well as pro-metastatic genes, thereby controlling their tumorigenic potential and metastasis.

View Article and Find Full Text PDF

BMI1-expressing cancer stem cells (CSCs) play a key role in the development, progression, therapy resistance, recurrence, and metastasis of head and neck squamous cell carcinoma (HNSCC). Here, we present a chemically-induced HNSCC mouse model, genetically and pathologically similar to human HNSCC. This protocol describes how to use genetic lineage tracing based on the Cre-loxP recombination strategy, which allows us to study the regulation and targeting of BMI1 CSCs in primary tumors and lymph node metastases.

View Article and Find Full Text PDF

Immunosurveillance is a critical mechanism guarding against tumor development and progression. Checkpoint inhibitors have shown significant success in cancer treatment, but expression of key factors such as PD-L1 in putative cancer stem cell (CSC) populations in squamous cell carcinoma has been inconclusive, suggesting that CSCs may have developed other mechanisms to escape immune surveillance. Here we show that CSCs upregulate the immune checkpoint molecule CD276 (B7-H3) to evade host immune responses.

View Article and Find Full Text PDF

Developing strategies to activate tumor-cell-intrinsic immune response is critical for improving tumor immunotherapy by exploiting tumor vulnerability. KDM4A, as a histone H3 lysine 9 trimethylation (H3K9me3) demethylase, has been found to play a critical role in squamous cell carcinoma (SCC) growth and metastasis. Here we report that KDM4A inhibition promoted heterochromatin compaction and induced DNA replication stress, which elicited antitumor immunity in SCC.

View Article and Find Full Text PDF

Tendon injuries disrupt the balance between stability and mobility, causing compromised functions and disabilities. The regeneration of mature, functional tendons remains a clinical challenge. Here, we perform transcriptional profiling of tendon developmental processes to show that the extracellular matrix-associated protein periostin (Postn) contributes to the maintenance of tendon stem/progenitor cell (TSPC) functions and promotes tendon regeneration.

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

Skeletal aging is a complex process, characterized by a decrease in bone formation, an increase in marrow fat, and stem cell exhaustion. Loss of H3K9me3, a heterochromatin mark, has been proposed to be associated with aging. Here, we report that loss of KDM4B in mesenchymal stromal cells (MSCs) exacerbated skeletal aging and osteoporosis by reducing bone formation and increasing marrow adiposity via increasing H3K9me3.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) derived from human embryonic stem cells (hESCs) have significant potential for cell-mediated bone regeneration. Our recent study revealed that inhibiting the epigenetic regulator EZH2 plays a key role in promoting the mesodermal differentiation of hESCs. In this study, an epigenome-wide analysis of hESCs and MSCs revealed that growth differentiation factor 6 (GDF6), which is involved in bone formation, was the most upregulated gene associated with MSCs compared to hESCs.

View Article and Find Full Text PDF