Publications by authors named "Cun-Bo Zhang"

Electron-proton energy relaxation rates are assessed using molecular dynamics (MD) simulations in weakly-coupled hydrogen plasmas. To this end, we use various approaches to extract the energy relaxation rate from MD-simulated temperatures, and we find that existing extracting approaches may yield results with a sizable discrepancy larger than the variance between analytical models, which is further verified by well-known case studies. Present results show that two of the extracting approaches can produce identical results, which is attributed to a proper treatment of relaxation evolution.

View Article and Find Full Text PDF

We study the mechanism of the impact of random media on the stochastic radiation transport based on a one-dimensional (1D) planar model. To this end, we use a random sampling of mixtures combined with a deterministic solution of the time-dependent radiation transport equation coupled to a material temperature equation. Compared to purely absorbing cases [C.

View Article and Find Full Text PDF

We study stochastic radiation transport through random media in one dimension, in particular for pure absorbing cases. The statistical model to calculate the ensemble-averaged transmission for a binary random mixture is derived based on the cumulative probability density function (PDF) of optical depth, which is numerically simulated for both Markovian and non-Markovian mixtures by Monte Carlo calculations. We present systematic results about the influence of mixtures' stochasticity on the radiation transport.

View Article and Find Full Text PDF