Electron-proton energy relaxation rates are assessed using molecular dynamics (MD) simulations in weakly-coupled hydrogen plasmas. To this end, we use various approaches to extract the energy relaxation rate from MD-simulated temperatures, and we find that existing extracting approaches may yield results with a sizable discrepancy larger than the variance between analytical models, which is further verified by well-known case studies. Present results show that two of the extracting approaches can produce identical results, which is attributed to a proper treatment of relaxation evolution.
View Article and Find Full Text PDFWe study the mechanism of the impact of random media on the stochastic radiation transport based on a one-dimensional (1D) planar model. To this end, we use a random sampling of mixtures combined with a deterministic solution of the time-dependent radiation transport equation coupled to a material temperature equation. Compared to purely absorbing cases [C.
View Article and Find Full Text PDFWe study stochastic radiation transport through random media in one dimension, in particular for pure absorbing cases. The statistical model to calculate the ensemble-averaged transmission for a binary random mixture is derived based on the cumulative probability density function (PDF) of optical depth, which is numerically simulated for both Markovian and non-Markovian mixtures by Monte Carlo calculations. We present systematic results about the influence of mixtures' stochasticity on the radiation transport.
View Article and Find Full Text PDF