In the version of this article originally published, the name of author Martin H. de Borst was coded incorrectly in the XML. The error has now been corrected in the HTML version of the paper.
View Article and Find Full Text PDFBackground: Identification of single nucleotide polymorphisms (SNPs) associated with gene expression levels, known as expression quantitative trait loci (eQTLs), may improve understanding of the functional role of phenotype-associated SNPs in genome-wide association studies (GWAS). The small sample sizes of some previous eQTL studies have limited their statistical power. We conducted an eQTL investigation of microarray-based gene and exon expression levels in whole blood in a cohort of 5257 individuals, exceeding the single cohort size of previous studies by more than a factor of 2.
View Article and Find Full Text PDFBackground: The molecular, biochemical, and genetic mechanisms that regulate the complex metabolic network of soybean seed development determine the ultimate balance of protein, lipid, and carbohydrate stored in the mature seed. Many of the genes and metabolites that participate in seed metabolism are unknown or poorly defined; even more remains to be understood about the regulation of their metabolic networks. A global omics analysis can provide insights into the regulation of seed metabolism, even without a priori assumptions about the structure of these networks.
View Article and Find Full Text PDFObjective: To characterize mucosal gene expression in dogs with chronic enteropathy (CE).
Animals: 18 dogs with CE and 6 healthy control dogs.
Procedures: Small intestinal mucosal biopsy specimens were endoscopically obtained from dogs.
Transcriptomic analysis of the response to bacterial pathogens has been reported for several species, yet few studies have investigated the transcriptional differences in whole blood in subjects that differ in their disease response phenotypes. Salmonella species infect many vertebrate species, and pigs colonized with Salmonella enterica serovar Typhimurium (ST) are usually asymptomatic, making detection of these Salmonella-carrier pigs difficult. The variable fecal shedding of Salmonella is an important cause of foodborne illness and zoonotic disease.
View Article and Find Full Text PDFBackground: Aberrant mucosal immune responses to antigens of the resident microbiota are a significant cause of inflammatory bowel diseases (IBD), as are genetic and environmental factors. Previous work from our laboratory demonstrated that Helicobacter bilis colonization of immunocompetent, defined microbiota mice induced antigen-specific immune responses to the resident microbiota, yet these mice failed to develop colitis, suggesting that the immunological provocation induced by H. bilis alone was insufficient to induce disease.
View Article and Find Full Text PDFIn a microarray experiment, one experimental design is used to obtain expression measures for all genes. One popular analysis method involves fitting the same linear mixed model for each gene, obtaining gene-specific p-values for tests of interest involving fixed effects, and then choosing a threshold for significance that is intended to control false discovery rate (FDR) at a desired level. When one or more random factors have zero variance components for some genes, the standard practice of fitting the same full linear mixed model for all genes can result in failure to control FDR.
View Article and Find Full Text PDF