Remote Sens Ecol Conserv
October 2023
Climate change and increasing human activities are impacting ecosystems and their biodiversity. Quantitative measurements of essential biodiversity variables (EBV) and essential climate variables are used to monitor biodiversity and carbon dynamics and evaluate policy and management interventions. Ecosystem structure is at the core of EBVs and carbon stock estimation and can help to inform assessments of species and species diversity.
View Article and Find Full Text PDFAn automated laser rangefinding instrument was developed to characterize overstorey and understorey vegetation dynamics over time. Design criteria were based on information needs within the statewide forest monitoring program in Victoria, Australia. The ground-based monitoring instrument captures the key vegetation structural information needed to overcome ambiguity in the estimation of forest Leaf Area Index (LAI) from satellite sensors.
View Article and Find Full Text PDFThere are many techniques for measuring leaf area index (LAI) and forest canopy foliage profiles but their accuracy is questionable. This paper briefly reviews current methods of estimating forest LAI and presents a novel, ground-based laser system, Echidna that can make a wide range of measurements of forest structure, including LAI. Here, use of the system to provide field data and derived gap probabilities in the form of a 'hemispherical photograph with range' is demonstrated.
View Article and Find Full Text PDFABSTRACT Dothistroma needle blight is a serious foliar disease in Australian Pinus radiata plantations causing defoliation, decreased productivity and, in extreme cases, tree death. Conventional methods of monitoring forest health such as aerial survey and ground assessments are labor intensive, time consuming, and subjective. Remote sensing provides a synoptic view of the canopy and can indicate areas affected by damaging agents such as pests and pathogens.
View Article and Find Full Text PDFLeaf and crown damage and discoloration characteristics are important variables when defining the health of eucalypt tree species and have been used as key indicators of environmental quality. These indicators can vary significantly over a few hectares, especially in mixed-species forests, making field-based environmental surveillance of crown condition an extremely expensive and logistically impractical task. Reflectance in narrow spectral wavelengths obtained from a field-based spectroradiometer and a Compact Airborne Spectrographic Imager 2 (CASI-2) were collected over eucalypt vegetation of varying condition in southeastern Australia and compared with leaf- and crown-based attributes including percent red foliage discoloration, percent leaf damage, and crown density and crown foliage condition.
View Article and Find Full Text PDFThe physiological status of forest canopy foliage is influenced by a range of factors that affect leaf pigment content and function. Recently, several indices have been developed from remotely sensed data that attempt to provide robust estimates of leaf chlorophyll content. These indices have been developed from either hand-held spectroradiometer spectra or high spectral resolution (or hyperspectral) imagery.
View Article and Find Full Text PDF