Publications by authors named "Culp P"

Introduction: Chronic pain in a military population is prevalent, is costly, and can limit daily activities and affect soldier readiness. It has been associated with childhood adversity (CA) within the veteran, adult, and pediatric populations. Given the need to maximize soldier resiliency, an examination of the link between CA and chronic pain in an active duty population for a better understanding that informs treatment options is warranted.

View Article and Find Full Text PDF

CRISPR/Cas9 gene-editing technology allows researchers to study protein function by specifically introducing double-stranded breaks in the gene of interest then analyze its subsequent loss in sensitive biological assays. To help characterize one of a series of highly potent, conditionally active, T cell engaging bispecific molecules called COBRA™, the human EpCAM gene was disrupted in HT29 cells using CRISPR/Cas9 and guide RNA targeting its Exon 2. Although a commercially available antibody indicated loss of cell-surface expression, the EpCAM targeting bispecific COBRA was still able to lyse these cells in a T cell dependent cellular cytotoxicity assay.

View Article and Find Full Text PDF

T cells have a unique capability to eliminate cancer cells and fight malignancies. Cancer cells have adopted multiple immune evasion mechanisms aimed at inhibiting T cells. Dramatically improved patient outcomes have been achieved with therapies genetically reprogramming T cells, blocking T-cell inhibition by cancer cells, or transiently connecting T cells with cancer cells for redirected lysis.

View Article and Find Full Text PDF

Conditionally active COBRA™ (COnditional Bispecific Redirected Activation) T cell engagers are engineered to overcome the limitations of inherently active first-generation T cell engagers, which are unable to discern between tumor and healthy tissues. Designed to be administered as prodrugs, COBRAs target cell surface antigens upon administration, but engage T cells only after they are activated within the tumor microenvironment (TME). This allows COBRAs to be preferentially turned on in tumors while safely remaining inactive in healthy tissue.

View Article and Find Full Text PDF

Agonistic CD40 monoclonal antibodies (mAb) have demonstrated some clinical activity, but with dose-limiting toxicity. To reduce systemic toxicity, we developed a bispecific molecule that was maximally active in the presence of a tumor antigen and had limited activity in the absence of the tumor antigen. LB-1 is a bispecific molecule containing single-chain Fv domains targeting mouse CD40 and the tumor antigen mesothelin.

View Article and Find Full Text PDF

Enavatuzumab is a humanized IgG1 anti-TWEAK receptor monoclonal antibody that was evaluated in a phase I clinical study for the treatment of solid malignancies. The current study was to determine whether and how myeloid effector cells were involved in postulated mechanisms for its potent antitumor activity in xenograft models. The initial evidence for a role of effector cells was obtained in a subset of tumor xenograft mouse models whose response to enavatuzumab relied on the binding of Fc of the antibody to Fc receptor.

View Article and Find Full Text PDF

This phase I study evaluates the safety, MTD, pharmacokinetics (PK), pharmacodynamics, and preliminary anticancer activity of enavatuzumab, a humanized IgG1 antibody to the TWEAK receptor, in patients with advanced solid malignancies. Patients received escalating doses of enavatuzumab given intravenously over 60 minutes every 2 weeks. Blood was obtained for PK and biomarker assessment.

View Article and Find Full Text PDF

Allyl sulphides are reactive substrates in ruthenium-catalysed olefin metathesis reactions, provided each substrate is matched with a suitable catalyst. A profile of catalyst activity is described, along with the first demonstration of allyl sulphides as traceless promoters in relayed ring-closing metathesis reactions.

View Article and Find Full Text PDF

Purpose: (1) To determine TweakR expression in human breast cancers (BC), (2) evaluate the antitumor effect of the anti-TweakR antibody PDL192, used alone or after chemotherapy-induced complete remission (CR), on patient-derived BC xenografts (PDX) and (3) define predictive markers of response.

Experimental Design: TweakR expression was analyzed by IHC on patients and PDXs BC samples. In vivo antitumor effect of PDL192 was evaluated on eight TweakR-positive BC PDXs alone or after complete remission induced by a combination of doxorubicin and cyclophosphamide.

View Article and Find Full Text PDF

TweakR is a TNF receptor family member, whose natural ligand is the multifunctional cytokine TWEAK. The growth inhibitory activity observed following TweakR stimulation in certain cancer cell lines and the overexpression of TweakR in many solid tumor types led to the development of enavatuzumab (PDL192), a humanized IgG1 monoclonal antibody to TweakR. The purpose of this study was to determine the mechanism of action of enavatuzumab's tumor growth inhibition and to provide insight into the biology behind TweakR as a cancer therapeutic target.

View Article and Find Full Text PDF

Background: The receptor for the cytokine TWEAK (TweakR) is a cell surface member of the tumor necrosis factor receptor superfamily with diverse biological roles. TNFRSF family members are appealing therapeutic targets in oncology due to their aberrant expression and function in tumor cells. The goal of the current study was to examine the potential of TweakR as a therapeutic target in breast cancer.

View Article and Find Full Text PDF

Purpose: Targeted therapeutics have significantly changed the outcome for patients diagnosed with cancer. Still, effective therapeutic intervention does not exist for many cancers and much remains to be done. The objective of this study was to identify novel genes that potentially regulate tumor growth, to target these gene products with monoclonal antibodies, and to examine the therapeutic potential of these antibodies.

View Article and Find Full Text PDF

Cytochrome P450c17 catalyzes the 17alpha-hydroxylase/17,20 lyase activity needed for sex steroid synthesis. We recently characterized the nuclear phosphoprotein SET as a novel transcriptional regulator that binds to the -447/-399 region of the rat P450c17 gene, along with the transcription factors COUP-TF II, NGF-IB, and SF-1. Gel shift studies localized SET binding to nucleotides -410/-402.

View Article and Find Full Text PDF

During oocyte maturation in Xenopus, previously quiescent maternal mRNAs are translationally activated at specific times. We hypothesized that the translational recruitment of individual messages is triggered by particular cellular events and investigated the potential for known effectors of the meiotic cell cycle to activate the translation of the FGF receptor-1 (XFGFR) maternal mRNA. We found that both c-mos and cdc2 activate the translation of XFGFR.

View Article and Find Full Text PDF

FGF signaling is critical for establishing the Xenopus laevis embryonic body plan and requires the expression of functional FGF receptor during early embryogenesis. FGF receptor-1 (XFGFR) maternal mRNA is present in immature oocytes, but the protein is not expressed until oocyte maturation. In this report we demonstrate that endogenous XFGFR translation begins just prior to germinal vesicle breakdown and that translation depends on completion of earlier meiotic events.

View Article and Find Full Text PDF

The zebrafish is rapidly becoming a popular model system for the study of vertebrate development because it is ideal for both embryological studies and genetic analysis. To determine if a retroviral vector pseudotyped with the envelope glycoprotein of the vesicular stomatitis virus could infect zebrafish embryos, and in particular, the cells destined to become the germ line, a pseudotyped virus was injected into blastula-stage zebrafish embryos. Fifty-one embryos were allowed to develop and eight transmitted proviral DNA to their progeny.

View Article and Find Full Text PDF

With the goal of developing techniques for DNA insertional mutagenesis in zebrafish, we established procedures for rapidly obtaining and injecting large numbers of fertilized eggs. Using either of two plasmid constructs, we injected uncut DNA into fertilized eggs at the one- or two-cell stage. Fish hatched from injected eggs were raised to sexual maturity, and the frequency of transgenic founder fish was determined by pair-mating the fish and testing DNA extracted from pools of their 16-hr-old offspring by the polymerase chain reaction (PCR) and then Southern analysis.

View Article and Find Full Text PDF

As an approach to evaluating the contribution of classes of endogenous viral sequences to leukemogenesis, a genomic library was prepared from the highly tumorigenic AKR SL12.3 cell line and screened for env-containing proviruses. An extensive battery of virus-derived probes and specific oligonucleotide probes were used to segregate 83 positive clones into related groups.

View Article and Find Full Text PDF

Penetration into the abdominal cavity with injury to visceral, vascular, or neural structures is a potentially life-threatening complication of lumbar disc exploration. In this report, we used reconstructed computed tomographic measurements of the L3-L4, L4-L5, and L5-S1 intervertebral discs to show that lateral spine roentgenograms contain an unavoidable magnification error that makes accurate measurement of minimal depth to penetration impossible. This magnification error may mislead the unwary surgeon into an overestimation of actual disc size.

View Article and Find Full Text PDF

Twenty-three breaststroke swimmers (ranging in age from 6 to 30 years old) with painful knees were examined. Underwater movies of these swimmers were taken. Eighteen swimmers had tenderness under the medial facet of the patella and over the medial femoral intercondylar ridge.

View Article and Find Full Text PDF

This study examined the effects of vanadate on the potassium dependent phosphatase activity present in purified human kidney microsomal (Na+ + K+)-adenosine triphosphatase. Vanadate anion inhibited the K+-dependent phosphatase at a K1 of 35 nM. This inhibition was noncompetitive with the substrate, p-nitrophenylphosphate.

View Article and Find Full Text PDF

Recent evidence has suggested a role for the polyol pathway in pathogenesis of cell damage in diabetes Glucose may be phosphorylated to glucose-6-phosphate via hexokinase and enter glycolysis or reduced to sorbitol via aldose reductase to enter the polyol pathway. The poorly diffusible sorbitol is converted via sorbitol dehydrogenase to fructose. Hexokinase, aldose reductase and sorbitol dehydrogenase activities were measured in glomeruli (G) and small arteries (SA) taken from normal and diabetic human kidneys, Hexokinase in diabetic G was 1688, which was significantly decreased from normal, 3147 mmoles/kg-1/h-1.

View Article and Find Full Text PDF

The rehabilitation process must begin at the onset of illness and include not only a cure for the immediate disorders but methods of preventing further disability, the general management of convalescence, and the ultimate return of the individual to his maximum health and efficiency. As a member of the rehabilitation team the nurse must recognize the patient as a human being and emotionally accept him, maintain good interpersonal relations with other team members, know what resources are available, and help to provide continuity of care when the patient is discharged. She must counsel and guide the patient and family, know and apply good general nursing care, and understand the emotional factors in long-term care.

View Article and Find Full Text PDF