Publications by authors named "Cullen L Myers"

β-Lactams are the most widely used antibiotics for the treatment of bacterial infections because of their proven track record of safety and efficacy. However, susceptibility to β-lactam antibiotics is continually eroded by resistance mechanisms. Emerging multidrug-resistant (MDR) strains possessing altered alleles (encoding PBP2) pose a global health emergency as they threaten the utility of ceftriaxone, the last remaining outpatient antibiotic.

View Article and Find Full Text PDF

There is an urgent need for oral agents to combat resistant Gram-negative pathogens. Here, we describe the characterization of VNRX-5236, a broad-spectrum boronic acid β-lactamase inhibitor (BLI), and its orally bioavailable etzadroxil prodrug, VNRX-7145. VNRX-7145 is being developed in combination with ceftibuten, an oral cephalosporin, to combat strains of expressing extended-spectrum β-lactamases (ESBLs) and serine carbapenemases.

View Article and Find Full Text PDF

As shifts in the epidemiology of β-lactamase-mediated resistance continue, carbapenem-resistant (CRE) and carbapenem-resistant (CRPA) are the most urgent threats. Although approved β-lactam (BL)-β-lactamase inhibitor (BLI) combinations address widespread serine β-lactamases (SBLs), such as CTX-M-15, none provide broad coverage against either clinically important serine-β-lactamases (KPC, OXA-48) or clinically important metallo-β-lactamases (MBLs; e.g.

View Article and Find Full Text PDF

The cell wall of most Gram-positive bacteria contains equal amounts of peptidoglycan and the phosphate-rich glycopolymer wall teichoic acid (WTA). During phosphate-limited growth of the Gram-positive model organism Bacillus subtilis 168, WTA is lost from the cell wall in a response mediated by the PhoPR two-component system, which regulates genes involved in phosphate conservation and acquisition. It has been thought that WTA provides a phosphate source to sustain growth during starvation conditions; however, WTA degradative pathways have not been described for this or any condition of bacterial growth.

View Article and Find Full Text PDF

The rapid spread of antibiotic resistance has created a pressing need for the development of novel drug screening platforms. Herein, we report on the use of cell-based kinetic dose response curves for small molecule characterization in antibiotic discovery efforts. Kinetically monitoring bacterial growth at sub-inhibitory concentrations of antimicrobial small molecules generates unique dose response profiles.

View Article and Find Full Text PDF

Resistance to the antibiotic thiostrepton, in producing Streptomycetes, is conferred by the S-adenosyl-L-methionine (SAM)-dependent SPOUT methyltransferase Tsr. For this and related enzymes, the roles of active site amino acids have been inadequately described. Herein, we have probed SAM interactions in the Tsr active site by investigating the catalytic activity and the thermodynamics of SAM binding by site-directed Tsr mutants.

View Article and Find Full Text PDF

Drug combinations are valuable tools for studying biological systems. Although much attention has been given to synergistic interactions in revealing connections between cellular processes, antagonistic interactions can also have tremendous value in elucidating genetic networks and mechanisms of drug action. Here, we exploit the power of antagonism in a high-throughput screen for molecules that suppress the activity of targocil, an inhibitor of the wall teichoic acid (WTA) flippase in Staphylococcus aureus.

View Article and Find Full Text PDF

The genetics and enzymology of the biosynthesis of wall teichoic acid have been the extensively studied, however, comparatively little is known regarding the enzymatic degradation of this biological polymer. The GP12 protein from the Bacillus subtilis bacteriophage ϕ29 has been implicated as a wall teichoic acid hydrolase. We have studied the wall teichoic acid hydrolase activity of pure, recombinant GP12 using chemically defined wall teichoic acid analogs.

View Article and Find Full Text PDF

In Streptomyces lividans, the expression of several proteins is stimulated by the thiopeptide antibiotic thiostrepton. Two of these, TipAL and TipAS, autoregulate their expression after covalently binding to thiostrepton; this irreversibly sequesters the antibiotic and desensitizes the organism to its effects. In this work, additional molecular recognition interactions involved in this critical event were explored by utilizing various thiostrepton analogues and several site-directed mutants of the TipAS antibiotic binding protein.

View Article and Find Full Text PDF

We report the successful production of selectively-modified tail analogues of the natural product antibiotic thiostrepton, which have been used to evaluate the critical nature of this section of the antibiotic to its inhibition of protein synthesis. This work highlights the tail region as a critical area for future semi-synthetic or synthetically bioengineered thiostrepton derivatives.

View Article and Find Full Text PDF