MC1, a monomeric nucleoid-associated protein (NAP), is structurally unrelated to other DNA-binding proteins. The protein participates in the genome organization of several Euryarchaea species through an atypical compaction mechanism. It is also involved in DNA transcription and cellular division through unknown mechanisms.
View Article and Find Full Text PDFThe nucleoid-associated protein HU is involved in numerous DNA transactions and thus is essential in DNA maintenance and bacterial survival. The high affinity of HU for SSBs (single-strand breaks) has suggested its involvement in DNA protection, repair and recombination. SSB-containing DNA are major intermediates transiently generated by bifunctional DNA N-glycosylases that initiate the BER (base excision repair) pathway.
View Article and Find Full Text PDFHU is one of the major nucleoid-associated proteins involved in bacterial chromosome structure and in all DNA-dependent cellular activities. Similarly to eukaryotic histones, this small dimeric basic protein wraps DNA in a non-sequence specific manner, promoting DNA super-structures. In most bacteria, HU is a homodimeric protein encoded by a single gene.
View Article and Find Full Text PDFThe DNA mismatch repair (MMR) system participates in cis-diamminedichloroplatinum (II) (cisplatin) cytotoxicity through signaling of cisplatin DNA lesions by yet unknown molecular mechanisms. It is thus of great interest to determine whether specialized function of MMR proteins could be associated with cisplatin DNA damage. The major cisplatin 1,2-d(GpG) intrastrand crosslink and compound lesions arising from misincorporation of a mispaired base opposite either platinated guanine of the 1,2-d(GpG) adduct are thought to be critical lesions for MMR signaling.
View Article and Find Full Text PDFThe transcriptional activator RamA is involved in multidrug resistance (MDR) by increasing expression of the AcrAB-TolC RND-type efflux system in several pathogenic Enterobacteriaceae. In Salmonella enterica serovar Typhimurium (S. Typhimurium), ramA expression is negatively regulated at the local level by RamR, a transcriptional repressor of the TetR family.
View Article and Find Full Text PDFDNA base-damage recognition in the base excision repair (BER) is a process operating on a wide variety of alkylated, oxidized and degraded bases. DNA glycosylases are the key enzymes which initiate the BER pathway by recognizing and excising the base damages guiding the damaged DNA through repair synthesis. We report here biochemical and structural evidence for the irreversible entrapment of DNA glycosylases by 5-hydroxy-5-methylhydantoin, an oxidized thymine lesion.
View Article and Find Full Text PDFThe 3D structure of methanogen chromosomal protein 1 (MC1), determined with heteronuclear NMR methods, agrees with its function in terms of the shape and nature of the binding surface, whereas the 3D structure determined with homonuclear NMR does not. The structure features five loops, which show a large distribution in the ensemble of 3D structures. Evidence for the fact that this distribution signifies internal mobility on the nanosecond time scale was provided by using (15)N-relaxation and molecular dynamics simulations.
View Article and Find Full Text PDFThe Methanosarcina thermophila MC1 protein is a small basic protein that is able to bend DNA sharply. When this protein is submitted to oxidative stress through gamma irradiation, it loses its original DNA interaction properties. The protein can still bind DNA but its ability to bend DNA is decreased dramatically.
View Article and Find Full Text PDFThe chromosomal protein MC1 is a monomeric protein of 93 amino acids that is able to bind any DNA but has a slight preferential affinity for some sequences and structures, like cruciform and minicircles. The protein has been irradiated with 36Ar18+ ions of 95 MeV/nucleon. The LET of these particles in water is close to 270 keV/microm.
View Article and Find Full Text PDFThe MC1 protein is a chromosomal protein likely involved in the DNA compaction of some methanogenic archaea. This small and monomeric protein, structurally unrelated to other DNA binding proteins, bends DNA sharply. By studying the protein binding to various kinds of kinked DNA, we have previously shown that MC1 is able to discriminate between different deformations of the DNA helix.
View Article and Find Full Text PDFThe three-dimensional structure of methanogen chromosomal protein 1 (MC1), a chromosomal protein extracted from the archaebacterium Methanosarcina sp. CHTI55, has been solved using (1)H NMR spectroscopy. The small basic protein MC1 contains 93 amino acids (24 basic residues against 12 acidic residues).
View Article and Find Full Text PDFThe DNA-binding protein MC1 is a chromosomal protein extracted from the archaebacterium Methanosarcina sp. CHTI55. It binds any DNA, and exhibits an enhanced affinity for some short sequences and structures (circles, cruciform DNA).
View Article and Find Full Text PDFUpon gamma-ray or argon ion irradiation of the lac repressor protein, its peptide chain is cleaved and the protein loses its lac operator-binding activity, as shown respectively by polyacrylamide gel electrophoresis and retardation gel electrophoresis. We developed phenomenological models that satisfactorily account for the experimental results: the peptide chain cleavage model considers that the average number of chain breaks per protomer is proportional to the irradiation dose and that the distribution of the number of breaks per protomer obeys Poisson's law. The repressor inactivation model takes into account the quaternary structure (a dimer of dimer) and the organization of the repressor in domains (two DNA binding sites, one per dimer).
View Article and Find Full Text PDFPurpose: To calculate the probability of radiation-induced frank strand breakage (FSB) at each nucleotide in the Escherichia coli lac repressor-lac operator system using a simulation procedure. To compare calculated and experimental results. To asses the contribution of DNA conformational changes and of the masking by the protein to DNA protection by the repressor.
View Article and Find Full Text PDFThe conformational changes induced by the binding of the histone-like protein MC1 to DNA duplexes have been analyzed by dark-field electron microscopy and polyacrylamide gel electrophoresis. Visualisation of the DNA molecules by electron microscopy reveals that the binding of MC1 induces sharp kinks. Linear DNA duplexes (176 bp) which contained a preferential site located at the center were used for quantitative analysis.
View Article and Find Full Text PDFEur J Biochem
October 1998
The archaeon Methanosarcina thermophila expresses large amounts of a small basic protein, called MC1 (methanogen chromosomal protein), which was previously identified as a DNA-binding protein possibly involved in DNA compaction in some methanogenic species. We have investigated the binding of MC1 to various kinds of branched DNA molecules whose double helix axis is severely kinked. We show that MC1 is able to distinguish and to bind preferentially to four-way junctions.
View Article and Find Full Text PDFThe primary structure of the DNA-binding protein II from Zymomonas mobilis has been determined from data provided by automated Edman degradation of the intact protein and of peptides derived from cleavage at aspartic acid and arginine residues. When compared with the homologous protein isolated from other bacteria, the DNA-binding protein II from Z mobilis shows many substitutions. Several non-conservative substitutions at positions usually highly conserved in this type of protein probably account for the weaker DNA-binding activity of this protein compared to that of the E coli protein.
View Article and Find Full Text PDFThe interaction of the archaebacterial MC1 protein with 207 bp negatively supercoiled DNA minicircles has been examined by gel retardation assays and compared to that observed with the relaxed DNA minicircle. MC1 binding induces a drastic DNA conformational change of each minicircle, leading to an increase of the electrophoretic mobility of the DNA. A slight increase in salt concentration enhances the amount of bound MC1, and high NaCl concentrations are required to dissociate the complexes.
View Article and Find Full Text PDFElectron microscopy of DNA, either free or complexed with ligands, allows the analysis of local conformational variations along individual molecules. Electron microscopy is unique, in that it has the capacity to determine the average behaviour of a population of molecules observed individually, and can thus provide a better appreciation of variability within the series of molecules than biophysical or biochemical methods. Very encouraging results have been obtained by cryoelectron and near-field microscopies, especially atomic force microscopy, in parallel with traditional techniques for visualizing DNA molecules adsorbed onto a support film.
View Article and Find Full Text PDFBinding of the archaebacterial histone-like protein MC1 to DNA minicircles has been examined by gel retardation and electron microscopy. MC1 preferentially binds to a 207-base pair relaxed DNA minicircle as compared with the linear fragment. Random binding is observed at very low ionic strength, and a slight increase in salt concentration highly favors the formation of a complex that corresponds to the binding of two MC1 molecules per DNA ring.
View Article and Find Full Text PDFThe binding of MC1 protein, the major chromosomal protein of the archaebacterium Methanosarcina sp. CHTI 55, to the region preceding the strongly expressed genes encoding methyl coenzyme reductase in a closely related micro-organism has been investigated. By gel retardation and DNAase I footprinting assays, we identified a preferential binding sequence in an open reading frame of unknown function.
View Article and Find Full Text PDFDNA minicircles of 207 bp were constructed by the ligation of linear restriction fragments in the presence of various concentrations of ethidium bromide. Three topoisomers characterized by linking numbers (Lk) of 20, 19 and 18, and with helical repeats of 10.35, 10.
View Article and Find Full Text PDF