Publications by authors named "Cuizu Chang"

Article Synopsis
  • Magnetic topological materials like MnBiTe exhibit unique quantum phenomena due to their combined magnetism and complex band structures, including effects like the quantum anomalous Hall effect.
  • In this study, researchers created thin MnBiTe films and found that the Chern insulator state appears at high magnetic fields, highlighting interesting differences in even and odd layer structures.
  • The observed large exchange bias effect in odd layers, but not in even ones, is linked to differing magnetic properties in the surface and bulk, offering insights into the magnetic configurations and challenges in achieving specific quantum effects.
View Article and Find Full Text PDF

The interface of two materials can harbor unexpected emergent phenomena. One example is interface-induced superconductivity. In this work, we employ molecular beam epitaxy to grow a series of heterostructures formed by stacking together two nonsuperconducting antiferromagnetic materials, an intrinsic antiferromagnetic topological insulator MnBiTe and an antiferromagnetic iron chalcogenide FeTe.

View Article and Find Full Text PDF

The plateau phase transition in quantum anomalous Hall (QAH) insulators corresponds to a quantum state wherein a single magnetic domain gives way to multiple domains and then reconverges back to a single magnetic domain. The layer structure of the sample provides an external knob for adjusting the Chern number of the QAH insulators. Here, we employ molecular beam epitaxy to grow magnetic topological insulator multilayers and realize the magnetic field-driven plateau phase transition between two QAH states with odd Chern number change Δ.

View Article and Find Full Text PDF

Dirac and Weyl semimetals are a central topic of contemporary condensed matter physics, and the discovery of new compounds with Dirac/Weyl electronic states is crucial to the advancement of topological materials and quantum technologies. Here we show a widely applicable strategy that uses high configuration entropy to engineer relativistic electronic states. We take the AMnSb (A = Ba, Sr, Ca, Eu, and Yb) Dirac material family as an example and demonstrate that mixing of Ba, Sr, Ca, Eu and Yb at the A site generates the compound (BaSrCaEuYb)MnSb (denoted as AMnSb), giving access to a polar structure with a space group that is not present in any of the parent compounds.

View Article and Find Full Text PDF

Rare-earth monopnictides are a family of materials simultaneously displaying complex magnetism, strong electronic correlation, and topological band structure. The recently discovered emergent arc-like surface states in these materials have been attributed to the multi-wave-vector antiferromagnetic order, yet the direct experimental evidence has been elusive. Here we report observation of non-collinear antiferromagnetic order with multiple modulations using spin-polarized scanning tunneling microscopy.

View Article and Find Full Text PDF

We propose an intrinsic mechanism to understand the even-odd effect, namely, opposite signs of anomalous Hall resistance and different shapes of hysteresis loops for even and odd septuple layers (SLs), of MBE-grown MnBi_{2}Te_{4} thin films with electron doping. The nonzero hysteresis loops in the anomalous Hall effect and magnetic circular dichroism for even-SLs MnBi_{2}Te_{4} films originate from two different antiferromagnetic (AFM) configurations with different zeroth Landau level energies of surface states. The complex form of the anomalous Hall hysteresis loop can be understood from two magnetic transitions, a transition between two AFM states followed by a second transition to the ferromagnetic state.

View Article and Find Full Text PDF

The interface between two different materials can show unexpected quantum phenomena. In this study, we used molecular beam epitaxy to synthesize heterostructures formed by stacking together two magnetic materials, a ferromagnetic topological insulator (TI) and an antiferromagnetic iron chalcogenide (FeTe). We observed emergent interface-induced superconductivity in these heterostructures and demonstrated the co-occurrence of superconductivity, ferromagnetism, and topological band structure in the magnetic TI layer-the three essential ingredients of chiral topological superconductivity (TSC).

View Article and Find Full Text PDF

Magnetic topological states refer to a class of exotic phases in magnetic materials with the non-trivial topological property determined by magnetic spin configurations. An example of such states is the quantum anomalous Hall (QAH) state, which is a zero magnetic field manifestation of the quantum Hall effect. Current research in this direction focuses on QAH insulators with a thickness of less than 10 nm.

View Article and Find Full Text PDF

An axion insulator is a three-dimensional (3D) topological insulator (TI), in which the bulk maintains the time-reversal symmetry or inversion symmetry but the surface states are gapped by surface magnetization. The axion insulator state has been observed in molecular beam epitaxy (MBE)-grown magnetically doped TI sandwiches and exfoliated intrinsic magnetic TI MnBiTe flakes with an even number layer. All these samples have a thickness of ~ 10 nm, near the 2D-to-3D boundary.

View Article and Find Full Text PDF

Over the last decade, the possibility of realizing topological superconductivity (TSC) has generated much excitement. TSC can be created in electronic systems where the topological and superconducting orders coexist, motivating the continued exploration of candidate material platforms to this end. Here, we use molecular beam epitaxy (MBE) to synthesize heterostructures that host emergent interfacial superconductivity when a non-superconducting antiferromagnet (FeTe) is interfaced with a topological insulator (TI) (Bi, Sb)Te.

View Article and Find Full Text PDF

A quantum anomalous Hall (QAH) insulator is a topological phase in which the interior is insulating but electrical current flows along the edges of the sample in either a clockwise or counterclockwise direction, as dictated by the spontaneous magnetization orientation. Such a chiral edge current eliminates any backscattering, giving rise to quantized Hall resistance and zero longitudinal resistance. Here we fabricate mesoscopic QAH sandwich Hall bar devices and succeed in switching the edge current chirality through thermally assisted spin-orbit torque (SOT).

View Article and Find Full Text PDF

The integer quantum anomalous Hall (QAH) effect is a lattice analogue of the quantum Hall effect at zero magnetic field. This phenomenon occurs in systems with topologically non-trivial bands and spontaneous time-reversal symmetry breaking. Discovery of its fractional counterpart in the presence of strong electron correlations, that is, the fractional QAH effect, would open a new chapter in condensed matter physics.

View Article and Find Full Text PDF

To date, the quantum anomalous Hall effect has been realized in chromium (Cr)- and/or vanadium(V)-doped topological insulator (Bi,Sb)Te thin films. In this work, we use molecular beam epitaxy to synthesize both V- and Cr-doped BiTe thin films with controlled dopant concentration. By performing magneto-transport measurements, we find that both systems show an unusual yet similar ferromagnetic response with respect to magnetic dopant concentration; specifically the Curie temperature does not increase monotonically but shows a local maximum at a critical dopant concentration.

View Article and Find Full Text PDF

In quantum anomalous Hall (QAH) insulators, the interior is insulating but electrons can travel with zero resistance along one-dimensional (1D) conducting paths known as chiral edge channels (CECs). These CECs have been predicted to be confined to the 1D edges and exponentially decay in the two-dimensional (2D) bulk. In this Letter, we present the results of a systematic study of QAH devices fashioned in a Hall bar geometry of different widths under gate voltages.

View Article and Find Full Text PDF

The introduction of superconductivity to the Dirac surface states of a topological insulator leads to a topological superconductor, which may support topological quantum computing through Majorana zero modes. The development of a scalable material platform is key to the realization of topological quantum computing. Here we report on the growth and properties of high-quality (Bi,Sb)Te/graphene/gallium heterostructures.

View Article and Find Full Text PDF

One-dimensional chiral interface channels can be created at the boundary of two quantum anomalous Hall (QAH) insulators with different Chern numbers. Such a QAH junction may function as a chiral edge current distributer at zero magnetic field, but its realization remains challenging. Here, by employing an in-situ mechanical mask, we use molecular beam epitaxy to synthesize QAH insulator junctions, in which two QAH insulators with different Chern numbers are connected along a one-dimensional junction.

View Article and Find Full Text PDF

The quantum anomalous Hall (QAH) insulator carries dissipation-free chiral edge current and thus provides a unique opportunity to develop energy-efficient transformative information technology. Despite promising advances, the QAH insulator has thus far eluded any practical applications. In addition to its low working temperature, the QAH state in magnetically doped topological insulators usually deteriorates with time in ambient conditions.

View Article and Find Full Text PDF

A topological insulator (TI) interfaced with an s-wave superconductor has been predicted to host topological superconductivity. Although the growth of epitaxial TI films on s-wave superconductors has been achieved by molecular-beam epitaxy, it remains an outstanding challenge for synthesizing atomically thin TI/superconductor heterostructures, which are critical for engineering the topological superconducting phase. Here we used molecular-beam epitaxy to grow BiSe films with a controlled thickness on monolayer NbSe and performed in situ angle-resolved photoemission spectroscopy and ex situ magnetotransport measurements on these heterostructures.

View Article and Find Full Text PDF

A Chern insulator is a two-dimensional material that hosts chiral edge states produced by the combination of topology with time reversal symmetry breaking. Such edge states are perfect one-dimensional conductors, which may exist not only on sample edges, but on any boundary between two materials with distinct topological invariants (or Chern numbers). Engineering of such interfaces is highly desirable due to emerging opportunities of using topological edge states for energy-efficient information transmission.

View Article and Find Full Text PDF

The plateau-to-plateau transition in quantum Hall effect under high magnetic fields is a celebrated quantum phase transition between two topological states. It can be achieved by either sweeping the magnetic field or tuning the carrier density. The recent realization of the quantum anomalous Hall (QAH) insulators with tunable Chern numbers introduces the channel degree of freedom to the dissipation-free chiral edge transport and makes the study of the quantum phase transition between two topological states under zero magnetic field possible.

View Article and Find Full Text PDF

The interplay between band topology and magnetism can give rise to exotic states of matter. For example, magnetically doped topological insulators can realize a Chern insulator that exhibits quantized Hall resistance at zero magnetic field. While prior works have focused on ferromagnetic systems, little is known about band topology and its manipulation in antiferromagnets.

View Article and Find Full Text PDF

Recently, MnBiTe has been demonstrated to be an intrinsic magnetic topological insulator and the quantum anomalous Hall (QAH) effect was observed in exfoliated MnBiTe flakes. Here, we used molecular beam epitaxy (MBE) to grow MnBiTe films with thickness down to 1 septuple layer (SL) and performed thickness-dependent transport measurements. We observed a nonsquare hysteresis loop in the antiferromagnetic state for films with thickness greater than 2 SL.

View Article and Find Full Text PDF

MnBiTe, a van der Waals magnet, is an emergent platform for exploring Chern insulator physics. Its layered antiferromagnetic order was predicted to enable even-odd layer number dependent topological states. Furthermore, it becomes a Chern insulator when all spins are aligned by an applied magnetic field.

View Article and Find Full Text PDF

We report compelling evidence of an emergent topological Hall effect (THE) from chiral bubbles in a two-dimensional uniaxial ferromagnet, V-doped SbTe heterostructure. The sign of THE signal is determined by the net curvature of domain walls in different domain configurations, and the strength of THE signal is correlated with the density of nucleation or pinned bubble domains. The experimental results are in good agreement with the integrated linear transport and Monte Carlo simulations, corroborating the emergent gauge field at chiral magnetic bubbles.

View Article and Find Full Text PDF

The Berry phase picture provides important insights into the electronic properties of condensed matter systems. The intrinsic anomalous Hall (AH) effect can be understood as the consequence of non-zero Berry curvature in momentum space. Here, we fabricate TI/magnetic TI heterostructures and find that the sign of the AH effect in the magnetic TI layer can be changed from being positive to negative with increasing the thickness of the top TI layer.

View Article and Find Full Text PDF