Publications by authors named "Cuiying Ye"

Non-pharmaceutical interventions (NPIs) implemented to control SARS-CoV-2 have significantly influenced the activity of respiratory pathogens. This study investigated epidemiological changes among hospitalized patients with respiratory syncytial virus (RSV) before (2017-2019) and during (2020-2022) the COVID-19 pandemic in Hangzhou, China. We also examined viral load distribution across demographic and temporal variables.

View Article and Find Full Text PDF

Background: The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), influenza A, and respiratory syncytial virus (RSV) infections have similar modes of transmission and clinical symptoms. There is a need to identify simple diagnostic indicators to distinguish these three infections, particularly for community hospitals and low- and middle-income countries that lack nucleic acid detection kits. This study used clinical data to assess the diagnostic value of routine blood tests in differentiating between SARS-CoV-2, influenza A, and RSV infections in children.

View Article and Find Full Text PDF

Triboelectric nanogenerator (TENG) is a promising solution to harvest the low-frequency, low-actuation-force, and high-entropy droplet energy. Conventional attempts mainly focus on maximizing electrostatic energy harvest on the liquid-solid surface, but enormous kinetic energy of droplet hitting the substrate is directly dissipated, limiting the output performance. Here, a dual-mode TENG (DM-TENG) is proposed to efficiently harvest both electrostatic energy at liquid-solid surface from a droplet TENG (D-TENG) and elastic potential energy of the vibrated cantilever from a contact-separation TENG (CS-TENG).

View Article and Find Full Text PDF

Triboelectric nanogenerator (TENG) as a means of energy harvesting can effectively harvest ocean wave energy, but the energy conversion efficiency and stability of the device during long-term operations are still problems that must be solved for TENGs. Decreasing the frictional resistance between two triboelectric material surfaces is one of the critical approaches for improving the device efficiency and durability. In this work, a novel stacked disc-type rolling triboelectric nanogenerator (SDR-TENG) is designed and fabricated for low-frequency water wave energy harvesting.

View Article and Find Full Text PDF

Novel regioselective hydrodeoxygenation of α-diketones with phosphites as the deoxygenation reagent was realized via visible-light photoredox catalysis. Broad substrate scope and high functional group compatibility were obtained. Unsymmetric α-diketones were selectively reduced at the carbonyls of higher electrophilicity.

View Article and Find Full Text PDF

The triboelectric nanogenerator (TENG) is regarded as an effective strategy for harvesting energy from raindrops, and is a complementary solution with solar cells to achieve all-weather energy harvesting and sustainable energy supply. However, due to the irregularity of natural rainfalls in the volume, frequency, density, and location, designing high-efficiency raindrop TENG (R-TENG) arrays faces great challenges. In this work, a highly transparent, large-area, and high-efficiency R-TENG array with rational material choice, electrode structure, and array distribution is developed for efficiently harvesting irregular raindrop energy.

View Article and Find Full Text PDF

Background: Although early diagnosis and management are critical for prognosis of pediatric sepsis, there are no specific diagnostic biomarkers for the hyperinflammatory state and organ dysfunction, important stages of sepsis.

Methods: We enrolled 129 children with infection into three groups: non-sepsis infection (33), Sepsis 1.0 (hyperinflammatory state, 67), and Sepsis 3.

View Article and Find Full Text PDF

Triboelectric nanogenerators (TENGs) are useful for harvesting clean and widely distributed water droplet energy with high efficiency. However, the commonly used polymer films in TENGs for water droplet energy harvesting have the disadvantages of poor breathability, poor skin affinity, and irreparable hydrophobicity, which greatly hinder their wearable uses. Here, we report an all-fabric TENG (F-TENG), which not only has good air permeability and hydrophobic self-repairing properties but also shows effective energy conversion efficiency.

View Article and Find Full Text PDF

Combination flexible and stretchable textiles with self-powered sensors bring a novel insight into wearable functional electronics and cyber security in the era of Internet of Things. This work presents a highly flexible and self-powered fully fabric-based triboelectric nanogenerator (F-TENG) with sandwiched structure for biomechanical energy harvesting and real-time biometric authentication. The prepared F-TENG can power a digital watch by low-frequency motion and respond to the pressure change by the fall of leaves.

View Article and Find Full Text PDF

Equipping wearable electronics with special functions will endow them with more additional values and more comprehensive practical performance. Here, we report an ultraviolet (UV)-protective, self-cleaning, antibacterial, and self-powered all-nanofiber-based triboelectric nanogenerator (TENG) for mechanical energy harvesting and self-powered sensing, which is fabricated with Ag nanowires (NWs)/TPU nanofibers and the TiO@PAN networks through a facile electrospinning method. Due to the added TiO nanoparticles (NPs), the TENG presents excellent UV-protective performance, including the ultraviolet protection factor (UPF) of ∼204, the transmittance of UVA () of ∼0.

View Article and Find Full Text PDF

Mimicking the comprehensive functions of human sensing via electronic skins (e-skins) is highly interesting for the development of human-machine interactions and artificial intelligences. Some e-skins with high sensitivity and stability were developed; however, little attention is paid to their comfortability, environmental friendliness, and antibacterial activity. Here, we report a breathable, biodegradable, and antibacterial e-skin based on all-nanofiber triboelectric nanogenerators, which is fabricated by sandwiching silver nanowire (Ag NW) between polylactic-co-glycolic acid (PLGA) and polyvinyl alcohol (PVA).

View Article and Find Full Text PDF

Seed-mediated growth has been employed as a simple and powerful means to the shape-controlled synthesis of metal nanocrystals. In this work, we apply the principle of seed-mediated growth in analytical chemistry, and achieve improved sensitivity due to the low energy barrier in the target-induced formation of bimetallic nanoparticles with core-shell structure. As a result, a simple, reliable, highly sensitive and selective method for the detection of ellagic acid (EA), a naturally occurring polyphenolic antioxidant, has been developed.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionoekk1e2g6ht2svooskakqa4u09k0a7cc): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once