Publications by authors named "Cuiying Xiao"

Across mammalian species, new mothers undergo considerable behavioral changes to nurture their offspring and meet the caloric demands of milk production. While many neural circuits underlying feeding and parenting behaviors are well characterized, it is unclear how these different circuits interact and adapt during lactation. Here, we characterized the transcriptomic changes in the arcuate nucleus (ARC) and the medial preoptic area (MPOA) of the mouse hypothalamus in response to lactation and hunger.

View Article and Find Full Text PDF
Article Synopsis
  • The study highlights that in mice, nearly 40% of the light phase and 80% of the dark phase are marked by periods of increased energy expenditure (EE), known as ultradian bouts.
  • These bouts are associated with higher body temperatures and consist of most physical activity and wakefulness, suggesting that they are more indicative of mouse physiology than the traditional light/dark cycles.
  • The findings indicate that these ultradian bouts, resulting from brain-driven increases in body temperature, lead to significant energy expenditure from various bodily activities, making mouse metabolic physiology largely episodic rather than solely reliant on circadian rhythms.
View Article and Find Full Text PDF

Objective: Otopetrin 1 (OTOP1) is a proton channel that is highly expressed in brown adipose tissue. We examined the physiology of Otop1-/- mice, which lack functional OTOP1.

Methods: Mice were studied by indirect calorimetry and telemetric ambulatory body temperature monitoring.

View Article and Find Full Text PDF

Objective: Physical activity is a major component of total energy expenditure (TEE) that exhibits extreme variability in mice. Our objective was to construct a general, physiology-based model of TEE to accurately quantify the energy cost of physical activity.

Methods: Spontaneous home cage physical activity, body temperature, TEE, and energy intake were measured with frequent sampling.

View Article and Find Full Text PDF

Some non-adenosinergic drugs are reported to also act through adenosine receptors (ARs). We used mouse hypothermia, which can be induced by agonism at any of the four ARs, as an in vivo screen for adenosinergic effects. An AR contribution was identified when a drug caused hypothermia in wild type mice that was diminished in mice lacking all four ARs (quadruple knockout, QKO).

View Article and Find Full Text PDF

Objective: To improve understanding of mouse energy homeostasis and its applicability to humans, we quantitated the effects of housing density on mouse thermal physiology in both sexes.

Methods: Littermate wild type and Brs3-null mice were single- or group- (three per cage) housed and studied by indirect calorimetry with continuous measurement of core body temperature, energy expenditure, physical activity, and food intake.

Results: At 23 °C, below thermoneutrality, single-housed males had a lower body temperature and unchanged metabolic rate compared to group-housed controls.

View Article and Find Full Text PDF

Bombesin receptor subtype-3 (BRS3) is an orphan receptor that regulates energy homeostasis. We compared driver mice with constitutive or inducible Cre recombinase activity. The constitutive BRS3-Cre mice show a reporter signal (Cre-dependent tdTomato) in the adult brain because of lineage tracing in the dentate gyrus, striatal patches, and indusium griseum, in addition to sites previously identified in the inducible BRS3-Cre mice (including hypothalamic and amygdala subregions, and parabrachial nucleus).

View Article and Find Full Text PDF

The preoptic area (POA) is a key brain region for regulation of body temperature (Tb), dictating thermogenic, cardiovascular, and behavioral responses that control Tb. Previously characterized POA neuronal populations all reduced Tb when activated. Using mice, we now identify POA neurons expressing bombesin-like receptor 3 (POA) as a population whose activation increased Tb; inversely, acute inhibition of these neurons reduced Tb.

View Article and Find Full Text PDF

The A3 adenosine receptor (A3AR) has emerged as a therapeutic target with A3AR agonists to tackle the global challenge of neuropathic pain, and investigation into its mode of action is essential for ongoing clinical development. Immune cell A3ARs, and their activation during pathology, modulate cytokine release. Thus, the use of immune cells as a cellular substrate for the pharmacological action of A3AR agonists is enticing, but unknown.

View Article and Find Full Text PDF

Extracellular adenosine, a danger signal, can cause hypothermia. We generated mice lacking neuronal adenosine A1 receptors (A1AR, encoded by the Adora1 gene) to examine the contribution of these receptors to hypothermia. Intracerebroventricular injection of the selective A1AR agonist (Cl-ENBA, 5'-chloro-5'-deoxy-N6-endo-norbornyladenosine) produced hypothermia, which was reduced in mice with deletion of A1AR in neurons.

View Article and Find Full Text PDF

Human and mouse thermal physiology differ due to dissimilar body sizes. Unexpectedly, in mice we found no ambient temperature zone where both metabolic rate and body temperature were constant. Body temperature began increasing once cold-induced thermogenesis was no longer required.

View Article and Find Full Text PDF

Objective: Bombesin-like receptor 3 (BRS3) is an orphan receptor and Brs3 knockout mice develop obesity with increased food intake and reduced resting metabolic rate and body temperature. The neuronal populations contributing to these effects were examined.

Methods: We studied energy metabolism in mice with Cre-mediated recombination causing 1) loss of BRS3 selectively in SIM1- or MC4R-expressing neurons or 2) selective re-expression of BRS3 from a null background in these neurons.

View Article and Find Full Text PDF

Adenosine is a constituent of many molecules of life; increased free extracellular adenosine indicates cell damage or metabolic stress. The importance of adenosine signaling in basal physiology, as opposed to adaptive responses to danger/damage situations, is unclear. We generated mice lacking all four adenosine receptors (ARs), Adora1-/-;Adora2a-/-;Adora2b-/-;Adora3-/- (quad knockout [QKO]), to enable investigation of the AR dependence of physiologic processes, focusing on body temperature.

View Article and Find Full Text PDF

Bombesin-like receptor 3 (BRS3) is an orphan G-protein-coupled receptor that regulates energy homeostasis and heart rate. We report that acute activation of Brs3-expressing neurons in the dorsomedial hypothalamus (DMH) increased body temperature (Tb), brown adipose tissue temperature, energy expenditure, heart rate, and blood pressure, with no effect on food intake or physical activity. Conversely, activation of Brs3 neurons in the paraventricular nucleus of the hypothalamus had no effect on Tb or energy expenditure, but suppressed food intake.

View Article and Find Full Text PDF

Intraperitoneal administration of the melanocortin agonist melanotan II (MTII) to mice causes a profound, transient hypometabolism/hypothermia. It is preserved in mice lacking any one of melanocortin receptors 1, 3, 4, or 5, suggesting a mechanism independent of the canonical melanocortin receptors. Here we show that MTII-induced hypothermia was abolished in Kit mice, which lack mast cells, demonstrating that mast cells are required.

View Article and Find Full Text PDF

Extracellular adenosine is a danger/injury signal that initiates protective physiology, such as hypothermia. Adenosine has been shown to trigger hypothermia via agonism at A and A adenosine receptors (AAR, AAR). Here, we find that adenosine continues to elicit hypothermia in mice null for AAR and AAR and investigated the effect of agonism at AAR or AAR.

View Article and Find Full Text PDF

Objective: Bombesin-like receptor 3 (BRS-3) is an orphan G protein-coupled receptor. Brs3 null mice have reduced resting metabolic rate and body temperature, increased food intake, and obesity. Here we study the role of Brs3 in different neuron types.

View Article and Find Full Text PDF

Background & Aims: Development of hepatocellular carcinoma (HCC) is associated with alterations in the transforming growth factor-beta (TGF-β) signaling pathway, which regulates liver inflammation and can have tumor suppressor or promoter activities. Little is known about the roles of specific members of this pathway at specific of HCC development. We took an integrated approach to identify and validate the effects of changes in this pathway in HCC and identify therapeutic targets.

View Article and Find Full Text PDF

Preadipocytes initiate differentiation into adipocytes through a cascade of events. Mitotic clonal expansion, as one of the earliest events, is essential for adipogenesis. However, the underlying mechanisms that regulate mitotic clonal expansion remain elusive.

View Article and Find Full Text PDF

Small mammals have the ability to enter torpor, a hypothermic, hypometabolic state, allowing impressive energy conservation. Administration of adenosine or adenosine 5'-monophosphate (AMP) can trigger a hypothermic, torpor-like state. We investigated the mechanisms for hypothermia using telemetric monitoring of body temperature in wild type and receptor knock out (Adora1, Adora3) mice.

View Article and Find Full Text PDF

Bombesin-like receptor 3 (BRS-3) is an X-linked orphan Gq-coupled receptor that regulates food intake, metabolic rate, body temperature, heart rate, blood pressure, and insulin secretion. Most BRS-3 actions occur via the brain, through mechanisms including regulating sympathetic outflow. Ablation of Brs3 causes obesity, while synthetic agonists produce weight loss.

View Article and Find Full Text PDF

Bombesin-like receptor 3 (BRS-3) is an orphan G protein-coupled receptor that regulates energy expenditure, food intake, and body weight. We examined the effects of BRS-3 deletion and activation on blood pressure and heart rate. In free-living, telemetered Brs3 null mice the resting heart rate was 10% lower than wild-type controls, while the resting mean arterial pressure was unchanged.

View Article and Find Full Text PDF

Adenosine can induce hypothermia, as previously demonstrated for adenosine A1 receptor (A1AR) agonists. Here we use the potent, specific A3AR agonists MRS5698, MRS5841, and MRS5980 to show that adenosine also induces hypothermia via the A3AR. The hypothermic effect of A3AR agonists is independent of A1AR activation, as the effect was fully intact in mice lacking A1AR but abolished in mice lacking A3AR.

View Article and Find Full Text PDF

Bombesin-like receptor 3 (BRS-3) is an X-linked G protein-coupled receptor involved in the regulation of energy homeostasis. Brs3 null (Brs3-/y) mice become obese. To date, no high affinity endogenous ligand has been identified.

View Article and Find Full Text PDF