Given the extensive role of lipids in cancer development, there is substantial clinical interest in developing therapies that target lipid metabolism. In this study, we identified one cyclometalated iridium complex () that exhibits potent antiproliferation activity in MIA PaCa-2 cells by regulating fatty acid metabolism and sphingolipid metabolism simultaneously. also efficiently overcomes cisplatin resistance .
View Article and Find Full Text PDFArtif Cells Nanomed Biotechnol
December 2023
This study was aimed to develop an efficient tumour-targeted liposome nanobubbles (LNBs) system using ultrasound-targeted nanobubble destruction for enhanced release and transfection of miRNA-199a-3p in hepatocellular carcinoma (HCC) therapy. The prepared LNBs comprised a polyethylene glycol-modified liposome shell and a perfluoropentane (PFP) core. MiRNA-199a-3p was attached to the nanocomposite surface via electrostatic adsorption, while RGD peptide functionalized the LNBs surface for enhanced HCC cell targeting, namely PFP@miR-RGD-LNBs.
View Article and Find Full Text PDFThree ursolic acid-piperazine-dithiocarbamate ruthenium(II) polypyridyl complexes Ru1-Ru3 were designed and synthesized for evaluating antitumor activity. All the complexes exhibited high in vitro cytotoxicity against MGC-803, T24, HepG2, CNE2, MDA-MB-231, MCF-7, A549, and A549/DDP cell lines. Ru1, Ru2, and Ru3 were 11, 8 and 10 times, respectively, more active than cisplatin against A549/DDP.
View Article and Find Full Text PDFNanobubbles (NBs) are considered to be a new generation of ultrasound-responsive nanocarriers that can effectively target tumors, accurately release multi-drugs at desired locations, as well as simultaneously perform diagnosis and treatment. In this study, we designed theranostic NBs (FTY720@SPION/PFP/RGD-NBs) composed of RGD-modified liposomes as the shell, and perflenapent (PFP), superparamagnetic iron oxide nanoparticles (SPION), and fingolimod (2-amino-2[2-(4-octylphenyl)ethyl]-1,3-propanediol, FTY720) encapsulated as the core. The prepared FTY720@SPION/PFP/RGD-NBs were black spheres with a diameter range of 160-220 nm, eligible for enhanced permeability and retention (EPR) effects.
View Article and Find Full Text PDFA vaccine that induces broadly neutralizing antibodies (bnAbs) against the human immunodeficiency virus (HIV) would be instrumental in controlling the disease. The membrane proximal external region (MPER) peptide is an appealing antigen candidate since it is conserved and is the target of several human bnAbs, such as 2F5. We previously found that liposomes containing cobalt porphyrin-phospholipid (CoPoP) can bind to a his-tagged MPER peptide, resulting in biomimetic antigen presentation on a lipid bilayer.
View Article and Find Full Text PDFPfs25 is a malaria transmission-blocking vaccine antigen candidate, but its apparently limited immunogenicity in humans has hindered clinical development. Here, we show that recombinant, polyhistidine-tagged (his-tagged) Pfs25 can be mixed at the time of immunization with pre-formed liposomes containing cobalt porphyrin-phospholipid, resulting in spontaneous nanoliposome antigen particleization (SNAP). Antigens are stably presented in uniformly orientated display via his-tag insertion in the cobalt porphyrin-phospholipid bilayer, without covalent modification or disruption of antigen conformation.
View Article and Find Full Text PDFPrompt membrane permeabilization is a requisite for liposomes designed for local stimuli-induced intravascular release of therapeutic payloads. Incorporation of a small amount (i.e.
View Article and Find Full Text PDFDrug bioavailability is a key consideration for drug delivery systems. When loaded with doxorubicin, liposomes containing 5 molar % porphyrin-phospholipid (HPPH liposomes) exhibited in vitro and in vivo serum stability that could be fine-tuned by varying the drug-to-lipid ratio. A higher drug loading ratio destabilized the liposomes, in contrast to standard liposomes which displayed an opposite and less pronounced trend.
View Article and Find Full Text PDF