Genetically encoded fluorescent biosensors became indispensable tools for biological research, enabling real-time observation of physiological processes in live cells. Recent protein engineering efforts have resulted in the generation of a large variety of fluorescent biosensors for a wide range of biologically relevant processes, from small ions to enzymatic activity and signaling pathways. However, biosensors for imaging sulfate ions, the fourth most abundant physiological anion, in mammalian cells are still lacking.
View Article and Find Full Text PDFThe glymphatic movement of fluid through the brain removes metabolic waste. Noninvasive 40 Hz stimulation promotes 40 Hz neural activity in multiple brain regions and attenuates pathology in mouse models of Alzheimer's disease. Here we show that multisensory gamma stimulation promotes the influx of cerebrospinal fluid and the efflux of interstitial fluid in the cortex of the 5XFAD mouse model of Alzheimer's disease.
View Article and Find Full Text PDFFront Bioeng Biotechnol
October 2022
Engineered light, oxygen, and voltage (LOV)-based proteins are able to fluoresce without oxygen requirement due to the autocatalytic incorporation of exogenous flavin as a chromophore thus allowing for live cell imaging under hypoxic and anaerobic conditions. They were also discovered to have high sensitivity to transition metal ions and physiological flavin derivatives. These properties make flavin-binding fluorescent proteins (FPs) a perspective platform for biosensor development.
View Article and Find Full Text PDFGenetically encoded potassium indicators lack optimal binding affinity for monitoring intracellular dynamics in mammalian cells. Through structure-guided design and genome mining of potassium binding proteins, we developed green fluorescent potassium indicators with a broad range of binding affinities. KRaION1 (K ratiometric indicator for optical imaging based on mNeonGreen 1), based on the insertion of a potassium binding protein, Kbp, from (Ec-Kbp) into the fluorescent protein mNeonGreen, exhibits an isotonically measured of 69 ± 10 mM (mean ± standard deviation used throughout).
View Article and Find Full Text PDF