In this work, we describe a facile method for generating monodisperse Au@Ag core-shell nanocubes with well-controlled size and fine-tuned Ag shell thicknesses. In this synthesis method, Au nanocubes were prepared the seed-mediated growth method. Then, Au@Ag nanocubes with the core-shell structure were prepared separately by reducing AgNO with AA using as-prepared Au nanocubes as seeds.
View Article and Find Full Text PDFIn this work, a seed mediated strategy has been proposed to design and fabricate uniform octahedral shaped gold@gold-silver nanoparticles (Au@AuAg NPs) with unique concave structure and an AuAg alloy shell. The morphology and Au/Ag ratio of the Au@AuAg nanostructures can be delicately controlled by varying the concentration of reagents, namely the Au nanorod (NR) seeds, HAuCl and AgNO precursor. Besides, the investigation of the growth mechanism revealed that the morphology of the product also can be controlled by tuning the growth time.
View Article and Find Full Text PDFSurface-enhanced Raman scattering (SERS) fiber probes are useful for remote and online detection of harmful molecules using the SERS effect. In this study, a 3-dimensional (3D) SERS optical fiber probe is proposed. The formation of the 3D optical fiber probe mainly included three steps: construction of monolayer polystyrene (PS) spheres as a mask on the end face of the fiber, reactive ion etching (RIE) for PS spheres and fibers, and metal sputtering deposition.
View Article and Find Full Text PDFIn this work, we successfully demonstrate high-yield synthesis of high-quality gold nanorods (Au NRs) with width ranging from 6.5 nm to 175 nm by introducing heptanol molecules as secondary templating agents during cetyltrimethylammonium bromide-templated, seeded growth method. The results show that an appropriate concentration of heptanol molecules not only alter the micellization behavior of CTAB in water, but also help silver ions impact the symmetry-breaking efficiency of additional Au-NP seeds in addition to enhancing the utilization of gold precursors.
View Article and Find Full Text PDFIn this work, uniform and large gold nanoparticles (Au NPs) including quasi-spherical (QS) Au NPs with average diameters of 70 to 196 nm and trisoctahedral (TOH) Au NPs with average diameters of 140 to 195 nm were successfully synthesized by controlling the concentration of Cu2+ ions and the particle number of 3 nm Au-NP seeds, respectively, using a one-step seeded growth method with Cu2+-mediated Ostwald ripening. It is found that because of the concentration-dependent under-potential deposition of Cu2+ ions (CuUPD), 3 nm Au-NP seeds are firstly changed into Au NPs with a controlled QS- or TOH shape at the initial growth stage, followed by the conformal growth of Au atoms onto the initially formed Au NPs due to Cu2+-mediated Ostwald ripening, in which the extra Au atoms come from the dissolution of in situ Au nuclei by the unavoidable self-nucleation. Moreover, the as-prepared QS Au NPs with a rough surface exhibit a better SERS performance for physically adsorbed probes (crystal violet, CV) than the TOH Au NPs with sharp tips and with a comparable size.
View Article and Find Full Text PDFIn this work, quasi-spherical, uniform gold nanoparticles with rich deformation twinning (Au NPs) were first synthesized with the assistance of copper(II) ions. Then, these Au NPs were used as the cores for the fabrication of core-shell (CS) Au-Pd NPs with ultrathin Pd layers, which also can bear compressive strain because of the formation of corrugated structured Pd shells led by the lateral confinement imposed by deformation twinning in the Au cores. The presence of compressive strain in the CS Au-Pd NPs can result in the widening of the d-band width of the Pd shell and further the downshift of their d-band center, which can then improve the desorption ability of intermediates and still maintain the adsorption ability of the reactants because of the broad adsorption potential range.
View Article and Find Full Text PDFIn this work, the controlled epitaxial growth of ultrathin Pd shells of a few atomic layers (denoted as nL) on the surfaces of gold nanoparticle (Au NP) cores of different morphologies (trisoctahedral, cubic, and spherical shapes) in the presence of cetyltrimethylammonium chloride (CTAC) was achieved by regulating the pH value of the aqueous CTAC solution and finely tuning the amount of the Pd precursor. It was found that the critical shell thickness for epitaxial Pd growth at the optimal pH value was 4 atomic layers, taking {331}-faceted trisoctahedral (TOH) Au@Pd NPs as an example, on the basis of the results of atomic-resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images. Moreover, the resulting TOH Au@Pd NPs (100.
View Article and Find Full Text PDFIt is well known that the activity and stability of electrocatalysts are largely dependent on their surface facets. In this work, we have successfully regulated surface facets of three-dimensional (3D) metallic Au aerogels by salt-induced assembly of citrate-stabilized gold nanoparticles (Au NPs) of two different sizes and further size-dependent localized Ostwald ripening at controlled particle number ratios, where m and n represent the size of Au NPs. In addition, 3D Au -Pd aerogels were further synthesized on the basis of Au aerogels and also bear controlled surface facets because of the formation of ultrathin Pd layers on Au aerogels.
View Article and Find Full Text PDFIn this study, irregularly shaped, concave cuboidal Au@AuPd nanoparticles (ISCC-Au@AuPd NPs) with high-index facets were synthesized via Pd overgrowth on pre-formed ISCC-Au NPs with a concentration of Pd precursors as low as 2%. The AuPd alloy nature of the resulting shells was confirmed by X-ray photoelectron spectroscopy, cyclic voltammogram analysis, and energy dispersive X-ray spectroscopy. Among the irregularly shaped NPs obtained, the ISCC-Au97.
View Article and Find Full Text PDFWe investigate the effect of gold (Au) seeds prepared in cetyltrimethylammonium chloride solution (CTAC-Au seeds) on the index facets of trisoctahedral gold nanocrystals (TOH Au NCs). We demonstrate that monodisperse {331}-faceted TOH Au NCs with controllable sizes (from 60 to 255 nm) can be successfully prepared in high yield by using 3.0 nm CTAC-Au seeds or as-prepared 70 nm TOH Au NCs as seeds.
View Article and Find Full Text PDF