Publications by authors named "Cuiqin Yang"

Polymer nanoparticles that can sharply sense and detect biological signals in cells are promising candidates for biomedical and theranostic nanomaterials. However, the response ability of current polymer assemblies poorly matches the requirement of trace concentration level (10 ~ 10mol/L) of cellular biosignals due to their linear signal input-to-function output mode, which impedes their practical applications in vivo. Here we report a kind of nanobowl system with pH-tunable invaginated morphology that can nonlinearly amplify the response abilities toward biosignals by modulating the surface concavity.

View Article and Find Full Text PDF

Significant efforts have been dedicated to designing porous organic cage compounds with geometric complexity and topological diversity. However, the use of these cage molecules as premade building units for constructing infinite cage-based superstructures remains unexplored. Here, we report the use of a panel-decorated phosphine organic cage as a special monomer to achieve supramolecular polymerization, resulting in cage-by-cage noncovalent polymers through the synergy of metal-coordination and intercage-dimerization.

View Article and Find Full Text PDF

In order to explore the unique physiological roles of gas signaling molecules and gasotransmitters in vivo, chemists have engineered a variety of gas-responsive polymers that can monitor their changes in cellular milieu, and gas-releasing polymers that can orchestrate the release of gases. These have advanced their potential applications in the field of bio-imaging, nanodelivery, and theranostics. Since these polymers are of different chain structures and properties, the morphology of their assemblies will manifest distinct transitions after responding to gas or releasing gas.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) serves as a key gaseous regulator that not only directs many physiological activities, but also manifests therapeutic benefits to many diseases. Developing HS vehicle platforms for its local delivery and long-acting release is important to achieve target gas therapy. Most of the known HS-donating polymers contain labile thioester scaffolds within their structures that suffer from the issue of low gas releasing efficiency.

View Article and Find Full Text PDF

The quest for a universal method to shape the vesicular morphology in dynamic and diversified manners is a challenging topic of cell mimicry. Here we present a simple gas exchange strategy that can direct the deformation movements of polymer vesicles. Such vesicles are assembled by a class of gas-based dynamic polymers, where CO connects between the frustrated Lewis pair via dynamic gas-bridged bonds.

View Article and Find Full Text PDF

Plastid terminal oxidase (PTOX) is a plastid-localized plastoquinone (PQ) oxidase in plants. It functions as the terminal oxidase of chlororespiration, and has the potential ability to regulate the redox state of the PQ pool. Expression of the PTOX gene was up-regulated in soybean seedlings after exposure to water deficit stress for 6 h.

View Article and Find Full Text PDF

Background And Purpose: Tissue microRNAs (miRNAs) can detect cancers and predict prognosis. Several recent studies reported that tissue, plasma, and saliva miRNAs share similar expression profiles. In this study, we investigated the discriminatory power of salivary miRNAs (including whole saliva and saliva supernatant) for detection of esophageal cancer.

View Article and Find Full Text PDF