Purpose: Velocity selective arterial spin labeling (VSASL) quantification assumes that the labeled bolus continuously moves into the imaging voxel during the post-labeling delay (PLD). Faster blood flow could lead to a bolus duration shorter than the applied PLD of VSASL and cause underestimation of cerebral blood flow (CBF). This study aims to evaluate the performance of velocity-selective inversion (VSI) prepared arterial spin labeling (ASL) with different PLDs and pseudo-continuous ASL (PCASL) for quantification of hypercapnia-induced cerebrovascular reactivity (CVR), using phase-contrast (PC) MRI as a global reference.
View Article and Find Full Text PDFVascular pathology is the second leading cause of cognitive impairment and represents a major contributing factor in mixed dementia. However, biomarkers for vascular cognitive impairment and dementia (VCID) are under-developed. Here we aimed to investigate the potential role of CO2 Cerebrovascular Reactivity (CVR) measured with phase-contrast quantitative flow MRI in cognitive impairment and dementia.
View Article and Find Full Text PDFPost-acute COVID-19 syndrome (PCS) is highly prevalent. Critically ill patients requiring intensive care unit (ICU) admission are at a higher risk of developing PCS. The mechanisms underlying PCS are still under investigation and may involve microvascular damage in the brain.
View Article and Find Full Text PDFNeuroImmune Pharm Ther
December 2023
Objectives: Coronavirus disease 2019 (COVID-19) results in severe inflammation at the acute stage. Chronic neuroinflammation and abnormal immunological response have been suggested to be the contributors to neuro-long-COVID, but direct evidence has been scarce. This study aims to determine the integrity of the blood-brain barrier (BBB) in COVID-19 intensive care unit (ICU) survivors using a novel MRI technique.
View Article and Find Full Text PDFCerebrovascular reactivity (CVR) is typically assessed with a carbon dioxide (CO) stimulus combined with BOLD fMRI. Recently, resting-state (RS) BOLD fMRI has been shown capable of generating CVR maps, providing a potential for broader CVR applications in neuroimaging studies. However, prior RS-CVR studies have primarily been performed at a spatial resolution of 3-4 mm voxel sizes.
View Article and Find Full Text PDFNeural-vascular coupling (NVC) is the process by which oxygen and nutrients are delivered to metabolically active neurons by blood vessels. Murine models of NVC disruption have revealed its critical role in healthy neural function. We hypothesized that, in humans, aging exerts detrimental effects upon the integrity of the neural-glial-vascular system that underlies NVC.
View Article and Find Full Text PDFCerebrovascular reactivity (CVR) is an index of the dilatory function of cerebral blood vessels and has shown great promise in the diagnosis of risk factors in cerebrovascular disease. Aging is one such risk factor; thus, it is important to characterize age-related differences in CVR. CVR can be measured by BOLD MRI but few studies have measured quantitative cerebral blood flow (CBF)-based CVR in the context of aging.
View Article and Find Full Text PDFObjective: To determine whether MRI-based cerebrovascular reactivity (CVR) can predict cognitive performance independently of Alzheimer pathologic markers, we studied the relationship between cognition, CVR, and CSF-derived β-amyloid (Aβ) and tau in a group of elderly individuals with mixed Alzheimer and vascular cognitive impairment and dementia.
Methods: This was a cross-sectional study of 72 participants 69 ± 8 years of age consisting of individuals with normal cognition (n = 28) and cognitive impairment (n = 44) (including 36 with mild cognitive impairment [MCI] and 8 with mild dementia). CVR was measured with hypercapnia-MRI.
J Magn Reson Imaging
December 2020
Background: Alzheimer's disease and vascular cognitive impairment (VCI), as well as their concurrence, represent the most common types of cognitive dysfunction. Treatment strategies for these two conditions are quite different; however, there exists a considerable overlap in their clinical manifestations, and most biomarkers reveal similar abnormalities between these two conditions.
Purpose: To evaluate the potential of cerebral oxygen extraction fraction (OEF) as a biomarker for differential diagnosis of Alzheimer's disease and VCI.
Cerebrovascular reactivity (CVR), an index of brain vessel's dilatory capacity, is typically measured using hypercapnic gas inhalation or breath-holding as a vasoactive challenge. However, these methods require considerable subject cooperation and could be challenging in clinical studies. More recently, there have been attempts to use resting-state BOLD data to map CVR by utilizing spontaneous changes in breathing pattern.
View Article and Find Full Text PDFCerebral oxygen extraction fraction is an important physiological index of the brain's oxygen consumption and supply and has been suggested to be a potential biomarker for a number of diseases such as stroke, Alzheimer's disease, multiple sclerosis, sickle cell disease, and metabolic disorders. However, in order for oxygen extraction fraction to be a sensitive biomarker for personalized disease diagnosis, inter-subject variations in normal subjects must be minimized or accounted for, which will otherwise obscure its interpretation. Therefore, it is essential to investigate the physiological underpinnings of normal differences in oxygen extraction fraction.
View Article and Find Full Text PDFPurpose: Cerebral venous oxygenation (Y) is an important physiological parameter and has potential clinical application in many brain diseases. T-relaxation-under-spin-tagging (TRUST) is a commonly used MRI method to measure Y. Harmonization of this technique across MRI vendors is important for dissemination and multi-center studies of brain oxygenation and metabolism as a disease biomarker.
View Article and Find Full Text PDF