The understanding and control of the spin-orbit torque (SOT) are central to antiferromagnetic spintronics. Despite the fact that a giant SOT efficiency has been achieved in numerous materials, its efficient tuning in a given material has not been established. Materials with magnetic phase transitions (MPTs) offer a new perspective, as the SOT efficiency may vary significantly for the different magnetic orderings across the transition, and the transition itself can be readily tuned by various control parameters.
View Article and Find Full Text PDFJ Phys Condens Matter
February 2022
It is fascinating how the binary alloy FeRh has been the subject of a vast number of studies almost solely for a single-phase transition. This is, however, reasonable, considering how various degrees of freedom are intertwined around this phase transition. Furthermore, the tunability of this phase transition-the large response to tuning parameters, such as electric field and strain-endows FeRh huge potential in applications.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2021
We demonstrated a convenient method via applying uniaxial tensile strains to continuously tune the high-frequency properties of flexible magnetic films. CoFeB films were magnetron sputtered onto prestretched polydimethylsiloxane (PDMS) membranes. They exhibit a self-assembled periodic wrinkling surface structure because of the large mismatch of Young's moduli between the elastomeric PDMS substrates and the metal layers.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2019
High-quality flexible magnetic oxide thin films have promoted a wide range of potential applications in spintronic devices due to their unique physical properties. To obtain the optimized microwave magnetism for future all-oxide-based spintronic applications, high-quality oxide materials with excellent epitaxial quality as well as specific bending properties related to ferromagnetic resonance are high in demand. Here, (001)-oriented LaSrMnO epitaxial thin films with different thicknesses have been grown and subsequently transferred onto flexible poly(dimethylsiloxane) substrates.
View Article and Find Full Text PDFWith the development of flexible electronics, the mechanical flexibility of functional materials is becoming one of the most important factors that needs to be considered in materials selection. Recently, flexible epitaxial nanoscale magnetic materials have attracted increasing attention for flexible spintronics. However, the knowledge of the bending coupled dynamic magnetic properties is poor when integrating the materials in flexible devices, which calls for further quantitative analysis.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2018
Recent development in magnetic nanostructures has promoted flexible electronics into the application of integrated devices. However, the magnetic properties of flexible devices strongly depend on the bending states. In order to realize the design of new flexible devices driven by an external field, the first step is to make the magnetic properties insensitive to the bending.
View Article and Find Full Text PDFWe investigate the room-temperature, electric-field-mediated, non-volatile 180° switching of the unidirectional anisotropy field in an IrMn/CoFeB/Ta/Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructure. The variation in exchange bias under different electric fields appears clearly in the magnetic hysteresis loops. The remnant magnetization as a function of electric field, as determined by static magnetic measurements, exhibits a non-volatile behavior, which is consistent with the results of the ferromagnetic resonance field as a function of electric field.
View Article and Find Full Text PDF