Publications by authors named "Cuifang Yao"

As a dietary strategy, methionine restriction has been reported to promote longevity and regulate metabolic disorders. However, the role and possible regulatory mechanisms underlying methionine in neurodegenerative diseases such as Alzheimer's disease (AD), remain unexplored. This study utilized the data from BXD recombinant inbred (RI) mice to establish a correlation between the AD phenotype in mice and methionine level.

View Article and Find Full Text PDF

Chemotherapy is widely used to treat colorectal cancer (CRC). Despite its substantial benefits, the development of drug resistance and adverse effects remain challenging. This study aimed to elucidate a novel role of glucagon in anti-cancer therapy.

View Article and Find Full Text PDF

Nanoparticles are widely used in biological research and cancer therapy. In hepatocellular carcinoma, several nanoplatforms have been synthesized and studied to improve the drug efficacy; however, these nanoplatforms are still insufficient to eradicate tumors. Herein, we have synthesized a novel vanadium (V)-iron-oxide (ION) nanoparticle (VIO) that combines chemodynamic, photothermal, and diagnostic capacities to enhance the tumor suppression effect in one agent with multiple functions.

View Article and Find Full Text PDF

Age-related hearing loss (ARHL) is associated with cognitive dysfunction; however, the detailed underlying mechanisms remain unclear. The aim of this study is to investigate the potential underlying mechanism with a system genetics approach. A transcriptome-wide association study was performed on aged (12-32 months old) BXD mice strains.

View Article and Find Full Text PDF

Accumulation of nucleotide building blocks prior to and during S phase facilitates DNA duplication. Herein, we find that the anaphase-promoting complex/cyclosome (APC/C) synchronizes ribose-5-phosphate levels and DNA synthesis during the cell cycle. In late G and S phases, transketolase-like 1 (TKTL1) is overexpressed and forms stable TKTL1-transketolase heterodimers that accumulate ribose-5-phosphate.

View Article and Find Full Text PDF

Amino acids are known regulators of cellular signaling and physiology, but how they are sensed intracellularly is not fully understood. Herein, we report that each aminoacyl-tRNA synthetase (ARS) senses its cognate amino acid sufficiency through catalyzing the formation of lysine aminoacylation (K-AA) on its specific substrate proteins. At physiologic levels, amino acids promote ARSs bound to their substrates and form K-AAs on the ɛ-amine of lysines in their substrates by producing reactive aminoacyl adenylates.

View Article and Find Full Text PDF

The oncogenic mechanisms of overnutrition, a confirmed independent cancer risk factor, remain poorly understood. Herein, we report that enoyl-CoA hydratase-1 (ECHS1), the enzyme involved in the oxidation of fatty acids (FAs) and branched-chain amino acids (BCAAs), senses nutrients and promotes mTOR activation and apoptotic resistance. Nutrients-promoted acetylation of lys of ECHS1 impedes ECHS1 activity by impairing enoyl-CoA binding, promoting ECHS1 degradation and blocking its mitochondrial translocation through inducing ubiquitination.

View Article and Find Full Text PDF

In cancer cells, the mammalian target of rapamycin complex 1 (mTORC1) that requires hormonal and nutrient signals for its activation, is constitutively activated. We found that overexpression of pyruvate kinase M2 (PKM2) activates mTORC1 signaling through phosphorylating mTORC1 inhibitor AKT1 substrate 1 (AKT1S1). An unbiased quantitative phosphoproteomic survey identified 974 PKM2 substrates, including serine202 and serine203 (S202/203) of AKT1S1, in the proteome of renal cell carcinoma (RCC).

View Article and Find Full Text PDF

Elucidating the tumorigenic mechanism of R-2-hydroxyglutarate (R-2HG) is critical for determining how NADP(+)-IDH mutations cause cancer. Here we report that R-2HG induces cancerous metabolism and apoptosis resistance through promoting hypersuccinylation. By competitive inhibition of the mitochondrial tricarboxylic acid cycle enzyme succinate dehydrogenase (SDH), R-2HG preferentially induced succinyl-CoA accumulation and hypersuccinylation in the mitochondria.

View Article and Find Full Text PDF