The significance of biomedical applications of Ti alloys is best emphasized by their widespread utilization as implantable materials, such as internal supports and bone replacements. Ti alloys are sensitive to fretting wear, which leads to the early failure of Ti implants. Improved wear resistance of such implants is essential to ensure a prolonged implant life.
View Article and Find Full Text PDFMedium-entropy Zr-Nb-Ti (ZNT) alloys are being extensively investigated as load-bearing implant materials because of their exceptional biocompatibility and corrosion resistance, and low magnetic susceptibility. Nevertheless, enhancing their yield strength while simultaneously decreasing their elastic modulus presents a formidable obstacle, significantly constraining their broader utilization as metallic biomaterials. In this study, three medium-entropy ZNT alloys, i.
View Article and Find Full Text PDFGuided bone-regeneration membrane (GBRM) is commonly used in bone-repair surgery because it blocks fibroblast proliferation and provides spatial support in bone-defect spaces. However, the need for removal surgery and the lack of antibacterial properties of conventional GBRM limit its therapeutic applicability for alveolar bone defects. Here we developed a GBRM for alveolar bone-repair and -regeneration applications through double-sided electrospinning of polycaprolactone and chitosan layers on a Zn mesh surface (denoted DSZM).
View Article and Find Full Text PDFBiodegradable Zn alloys have significant application potential for hard-tissue implantation devices owing to their suitable degradation behavior and favorable biocompatibility. Nonetheless, pure Zn and its alloys in the as-cast state are mechanically instable and low in strength, which restricts their clinical applicability. Here, we report the exceptional mechanical, corrosion, and biocompatibility properties of hot-extruded Zn-5RE (wt.
View Article and Find Full Text PDFMetallic biomaterials, such as stainless steels, cobalt-chromium-molybdenum (Co-Cr-Mo) alloys, and titanium (Ti) alloys, have long been used as load-bearing implant materials due to their metallic mechanical strength, corrosion resistance, and biocompatibility. However, their magnetic susceptibility and elastic modulus of more than 100 GPa significantly restrict their therapeutic applicability. In this study, spinodal ZrNb, ZrNb, and ZrNb (at.
View Article and Find Full Text PDFThe permeability and the effective diffusivity of a porous scaffold are critical in the bone-ingrowth process. However, design guidelines for porous structures are still lacking due to inadequate understanding of the complex physiological processes involved. In this study, a model integrating the fundamental biological processes of bone regeneration was constructed to investigate the roles of permeability and effective diffusivity in regulating bone deposition in scaffolds.
View Article and Find Full Text PDFBiliary stenting is an important interventional method for the prevention and treatment of biliary tract diseases. However, complications, such as postoperative biliary infection and restenosis, frequently occur due to the extensive scope of the biliary system and the complex composition of bile. The combination of coating technology and biliary stents is expected to bring new approaches to the solution of these problems.
View Article and Find Full Text PDFTo bring about a revolution in energy storage through Li-ion batteries, it is crucial to develop a scalable preparation method for Si-based composite anodes. However, the severe volume expansion and poor ionic transport properties of Si-based composites present significant challenges. Previous research focused on SiO and nano Si/C composites to address these issues.
View Article and Find Full Text PDFZinc (Zn) and some of its alloys are recognized as promising biodegradable implant materials due to their acceptable biocompatibility, facile processability, and moderate degradation rate. Nevertheless, the limited mechanical properties and stability of as-cast Zn alloys hinder their clinical application. In this work, hot-rolled (HR) and hot-extruded (HE) Zn-5 wt.
View Article and Find Full Text PDFZinc (Zn)-dysprosium (Dy) binary alloys are promising biodegradable bone fracture fixation implants owing to their attractive biodegradability and mechanical properties. However, their clinical application is a challenge for bone fracture healing, due to the lack of Zn-Dy alloys with tailored proper bio-mechanical and osteointegration properties for bone regeneration. A Zn-5Dy alloy with high strength and ductility and a degradation rate aligned with the bone remodeling cycle is developed.
View Article and Find Full Text PDFMagnesium (Mg) alloys are widely used in bone fixation and bone repair as biodegradable bone-implant materials. However, their clinical application is limited due to their fast corrosion rate and poor mechanical stability. Here, the development of Mg-2Zn-0.
View Article and Find Full Text PDFZinc (Zn), magnesium (Mg), and their respective alloys have attracted great attention as biodegradable bone-implant materials due to their excellent biocompatibility and biodegradability. However, the poor mechanical strength of Zn alloys and the rapid degradation rate of Mg alloys limit their clinical application. The manufacture of Zn and Mg bimetals may be a promising way to improve their mechanical and degradation properties.
View Article and Find Full Text PDFZinc (Zn) and its alloys are used in bone-fixation devices as biodegradable bone-implant materials due to their good biosafety, biological function, biodegradability, and formability. Unfortunately, the clinical application of pure Zn is hindered by its insufficient mechanical properties and slow degradation rate. In this study, a Zn-5 wt.
View Article and Find Full Text PDFAlloys of magnesium, zinc or iron that do not contain toxic elements are attractive as construction material for biodegradable implants, i.e., the type of implants that harmlessly dissolve away within the human body after they have completed their intended task.
View Article and Find Full Text PDFBioelectricity plays an overriding role in directing cell migration, proliferation, differentiation etc. Tailoring the electro-extracellular environment through metallurgical manipulation could modulate the surrounding cell behaviors. In this study, different electric potential patterns, in terms of Volta potential distribution and gradient, were created on the metallic surface as an electric microenvironment, and their effects on adherent human mesenchymal stem cells were investigated.
View Article and Find Full Text PDFOwing to its superior mechanical and biological properties, titanium metal is widely used in dental implants, orthopedic devices, and bone regenerative materials. Advances in 3D printing technology have led to more and more metal-based scaffolds being used in orthopedic applications. Microcomputed tomography (μCT) is commonly applied to evaluate the newly formed bone tissues and scaffold integration in animal studies.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2023
Bacterial invasion and proliferation on various surfaces pose a serious threat to public health worldwide. Conventional antibacterial strategies that mainly rely on bactericides exhibit high bacteria-killing efficiency but might trigger the well-known risk of antibiotic resistance. Here, we report a superhydrophobic mechano-bactericidal surface with photodynamically enhanced antibacterial capability.
View Article and Find Full Text PDFZinc (Zn)-based alloys and composites are gaining increasing interest as promising biodegradable implant materials due to their appropriate biodegradation rates and biological functionalities. However, the inadequate mechanical strength and ductility of pure Zn have restricted its application. In this study, Zn matrix composites (ZMCs) reinforced with 0.
View Article and Find Full Text PDFThe unique combination of biodegradability, biocompatibility, and functionality of zinc (Zn)-based alloys makes them highly desirable for a wide range of medical applications. However, a long-standing problem associated with this family of biodegradable alloys in the as-cast state is their limited mechanical strength and slow degradation rate. Here we report the development of Zn-xDy (x = 1, 3, and 5 wt.
View Article and Find Full Text PDFLayered oxides based on manganese (Mn), rich in lithium (Li), and free of cobalt (Co) are the most promising cathode candidates used for lithium-ion batteries due to their high capacity, high voltage and low cost. These types of material can be written as xLiMnO·(1 - x) LiTMO (TM = Ni,Mn,etc.).
View Article and Find Full Text PDFGraded porous titanium scaffolds are gaining increasing attention as dental implants due to their ability to mimic the mechanical and biological properties of human bone. In this study, we have developed titanium scaffolds with graded primitive structures with porosities of 50.7 %, 61.
View Article and Find Full Text PDFThis study systematically investigated the effect of equal channel angular pressing (ECAP) on the microstructure, mechanical, corrosion, nano-tribological properties and biocompatibility of a newly developed β Ti-28Nb-35.4Zr (hereafter denoted TNZ) alloy. Results indicated that ECAP of the β TNZ alloy refined its microstructure by forming ultrafine grains without causing stress-induced phase transformation, leading to formation of a single β phase.
View Article and Find Full Text PDFNanomaterials (Basel)
June 2022
Nanocrystalline (NC) metallic materials have better mechanical properties, corrosion behavior and biocompatibility compared with their coarse-grained (CG) counterparts. Recently, nanocrystalline metallic materials are receiving increasing attention for biomedical applications. In this review, we have summarized the mechanical properties, corrosion behavior, biocompatibility, and clinical applications of different types of NC metallic materials.
View Article and Find Full Text PDFZinc (Zn)-based composites have received extensive attention as promising biodegradable materials due to their unique combination of moderate biodegradability, biocompatibility, and functionality. Nevertheless, the low mechanical strength of as-cast Zn-based composites impedes their practical clinical application. Here we reported the mechanical properties, corrosion behavior, wear properties, and cytotoxicity of in situ synthesized biodegradable Zn-xMgGe (x = 1, 3, and 5 wt.
View Article and Find Full Text PDF