Publications by authors named "Cuicui Su"

As a vital component of the global carbon pool, soils in arid and semi-arid regions play a significant role in carbon sequestration. In the context of global warming, increasing temperatures and moisture levels promote the transformation of barren land into wetlands, enhancing carbon sinks. However, the overdevelopment of oases and excessive extraction of groundwater lead to the opposite effect, reducing carbon sequestration.

View Article and Find Full Text PDF

Wearable sweat sensor offers a promising means for noninvasive real-time health monitoring, but the efficient collection and accurate analysis of sweat remains challenging. One of the obstacles is to precisely modulate the surface wettability of the microfluidics to achieve efficient sweat collection. Here a facile initiated chemical vapor deposition (iCVD) method is presented to grow and pattern polymer nanocone arrays with distinct superwettability on polydimethylsiloxane microfluidics, which facilitate highly efficient sweat transportation and collection.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) originating from cancer cells incorporate various critical biomolecules that can aid in early cancer diagnosis. However, the rapid analysis of these micro vesicles remains challenging due to their nano-scale size and overlapping dimensions, hindering sufficient capture in terms of quantity and purity. In this study, an acoustofluidic device was developed to enhance the yield of immune-captured EVs.

View Article and Find Full Text PDF

In the background of air pollution and regular COVID-19 prevention, personal protective masks are necessary for our daily life. However, protective masks with high PM filtration usually have poor air permeability and are mostly disposable, leading to a heavy burden on the environment. In this work, a reusable membrane based on piezoelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] nanofibers embedded with BaTiO nanoparticles (BTO NPs) was developed.

View Article and Find Full Text PDF

Microbiome plays an important role in evaluating soil quality for sustainable agriculture. However, the suitability of biological indicators in reclaimed farmland is less understood. Using high-throughput sequencing, we evaluated the soil microbial community of the newly created farmland (NF) after reclamation with two local high-yield farmlands (slope farmland (SF), check-dam farmland (CF)) on the Loess Plateau.

View Article and Find Full Text PDF

The ongoing pandemic caused by the novel coronavirus has turned out to be one of the biggest threats to the world, and the increase of drug-resistant bacterial strains also threatens the human health. Hence, there is an urgent need to develop novel anti-infective materials with broad-spectrum anti-pathogenic activity. In the present study, a fluorinated polycationic coating was synthesized on a hydrophilic and negatively charged polyester textile via one-step initiated chemical vapor deposition of poly(dimethyl amino methyl styrene--1H,1H,2H,2H-perfluorodecyl acrylate) (P(DMAMS--PFDA), PDP).

View Article and Find Full Text PDF

Biofilm formation on indwelling medical devices is a major cause of hospital-acquired infections. Monofunctional antibacterial surfaces have been developed to resist the formation of biofilms by killing bacteria on contact, but the adsorption of killed bacterial cells and debris gradually undermines the function of these surfaces. Here, we report a facile approach to produce an antibacterial surface that can regenerate its function after contamination.

View Article and Find Full Text PDF

We report initiated chemical vapor deposition of model-graded polymer coatings enabling antibacterial, antifouling, and biocompatible surfaces. The graded coating was constructed by a bottom layer consisting of bactericidal poly(dimethyl amino methyl styrene) and a surface layer consisting of both dimethyl amino methyl styrene (DMAMS) and hydrophilic vinyl pyrrolidone (VP) moieties. Fourier transform infrared spectra showed existence of both DMAMS and VP in the coating with DMAMS as the major component, while X-ray photoelectron spectroscopy analysis and water contact angle measurement revealed a VP-enriched coating surface.

View Article and Find Full Text PDF

Polymer grafting has been a powerful tool in the surface modification of biomaterials. Traditional solvent-based grafting, however, often requires laborious procedures taken under harsh conditions, which seriously hinders its practical applications. Here, we report a facile solvent-free graft-from method that is able to achieve a superior surface functionality as compared to most reported results from traditional solvent-based grafting.

View Article and Find Full Text PDF

The Loess Plateau is the most severely degraded soil area worldwide and represents one of the lowest areas of soil productivity. To solve the conundrum between increasing populations and decreasing agricultural acreage, enhancing the quantity of cultivated land, gully land consolidation projects has been implemented. However, the new creation farmland soil is not enough to satisfy the demand of agricultural production.

View Article and Find Full Text PDF

The effect of chain rigidity on the mechanic properties of DNA hydrogels was studied. Counterintuitively, the hydrogel formed by mainly flexible chains exhibited better stability, stretchability, and much mechanical properties than the hydrogel containing only rigid chains. Calculations showed that the crosslinking ratio in the hydrogel formed by flexible chains was about twice that of the hydrogel formed by rigid chains under the same conditions.

View Article and Find Full Text PDF

Size-dependent passive targeting based on the characteristics of tissues is a basic mechanism of drug delivery. While the nanometer-sized particles are efficiently captured by the liver and spleen, the micron-sized particles are most likely entrapped within the lung owing to its unique capillary structure and physiological features. To exploit this property in lung-targeting siRNA delivery, we designed and studied a multi-domain peptide named K-β, which was able to form inter-molecular β-sheet structures.

View Article and Find Full Text PDF

Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG)5/(KGKG)5, (EEGG)5/(KKGG)5, and (EEGG)5/(KGKG)5, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical.

View Article and Find Full Text PDF

Four kinds of amendments including humus, ammonium sulfate, lime, superphosphate and their complex combination were added to rapid immobilize the heavy metals in contaminated soils. The best material was chosen according to the heavy metals' immobilization efficiency and the Capacity Values of the fixative in stabilizing soil heavy metals. The redistributions of heavy metals were determined by the European Communities Bureau of Referent(BCR) fraction distribution experiment before and after treatment.

View Article and Find Full Text PDF

Polyelectrolyte complexes (PECs) are of great importance in drug delivery and gene therapy. The density and the distribution of the charges are key parameters of a polyelectrolyte, determining the structure of the complex and the kinetics of the complexation. Using peptides of precisely-controlled charge density as model molecules, we showed that the presence of weakly-charged peptides, (KGGG)5 or (KGKG)5, did not affect the complexation of highly-charged peptides (KKKK)5 with 21 bp oligonucleotides.

View Article and Find Full Text PDF

Physically coating liposomes with peptides of desirable functions is an economic, versatile, and less time-consuming approach to prepare drug delivery vehicles. In this work, we designed three peptides-Ac-WWKKKGGNNN-NH2 (W2K3), Ac-WWRRRGGNNN-NH2(W2R3), Ac-WWGGGGGNNN-NH2(W2G3)-and studied their coating ability on negatively charged liposomes. It was found that the coating was mainly driven by the electrostatic interaction between the peptides' cationic side groups and the acidic lipids, which also mediated the "anchoring " of Trp residuals in the interfacial region of lipid bilayers.

View Article and Find Full Text PDF