The CONSTITUTIVE PHOTOMORPHOGENIC 1-SUPPRESSOR OF PHYA-105 (COP1-SPA) complex is a central repressor of photomorphogenesis. This complex acts as an E3 ubiquitin ligase downstream of various light signaling transduced from multiple photoreceptors in plants. How the COP1-SPA activity is regulated by divergent light-signaling pathways remains largely elusive.
View Article and Find Full Text PDFCellulose is one of the most abundant organic polymers in nature. It contains multiple β-1,4-glucan chains synthesized by cellulose synthases (CesAs) on the plasma membrane of higher plants. CesA subunits assemble into a pseudo-sixfold symmetric cellulose synthase complex (CSC), known as a 'rosette complex'.
View Article and Find Full Text PDFMore and more researches have been carried out on the association between the tumor necrosis factor-α (TNF-α) 308 G/A polymorphism and psoriasis, however, controversial results have emerged in these studies. This meta-analysis was performed to quantitatively clarify the relationship between TNF-α 308 G/A polymorphism and the risk of psoriasis in different populations. Databases of PubMed, Springer Link, Ovid, Chinese Wanfang Data Bases, Chinese National Knowledge Infrastructure and Chinese Biology Medicine were investigated until June 2019.
View Article and Find Full Text PDFThe withdrawal reflex is a defensive reaction to nociceptive stimuli and can be used to regulate locomotor gait during rehabilitation. We investigated the effect of successive needle-pricking of the plantar and dorsal foot surfaces on poststroke lower limb function. Thirty-five hemiplegic patients, within one month after primary stroke, with an affected lower limb (Brunnstrom stage III) were randomly divided into intervention and control groups.
View Article and Find Full Text PDFCONSTANS, CONSTANS-LIKE, and TIMING OF CAB EXPRESSION1 (CCT) domain-containing proteins are a large family unique to plants. They transcriptionally regulate photoperiodic flowering, circadian rhythms, vernalization, and other related processes. Through their CCT domains, CONSTANS and HEADING DATE1 (HD1) coordinate with the NUCLEAR FACTOR Y (NF-Y) B/C dimer to specifically target a conserved 'CCACA' motif within the promoters of their target genes.
View Article and Find Full Text PDFCryptochromes (CRYs) are blue-light receptors in plants that harbor FAD as a cofactor and regulate various physiological responses. Photoactivated CRYs undergo oligomerization, which increases the binding affinity to downstream signaling partners. Despite decades of research on the activation of CRYs, little is known about how they are inactivated.
View Article and Find Full Text PDFEvid Based Complement Alternat Med
October 2019
Background: Posttraumatic epilepsy (PTE) is a common complication of traumatic brain injury (TBI), which seriously affects patients' survival and recovery. Vagus nerve stimulation (VNS) is a nonpharmacological therapy for epilepsy. The auricular branch of the vagus nerve (ABVN) is the only peripheral branch and has antiepileptic effects, but the efficacy of ABVN stimulation as treatment of late PTE is uncertain.
View Article and Find Full Text PDFNucleic Acids Res
April 2019
Members of the pentatricopeptide repeat (PPR) protein family are sequence-specific RNA-binding proteins that play crucial roles in organelle RNA metabolism. Each PPR protein consists of a tandem array of PPR motifs, each of which aligns to one nucleotide of the RNA target. The di-residues in the PPR motif, which are referred to as the PPR codes, determine nucleotide specificity.
View Article and Find Full Text PDFAs a large family of RNA-binding proteins, pentatricopeptide repeat (PPR) proteins mediate multiple aspects of RNA metabolism in eukaryotes. Binding to their target single-stranded RNAs (ssRNAs) in a modular and base-specific fashion, PPR proteins can serve as designable modules for gene manipulation. However, the structural basis for nucleotide-specific recognition by designer PPR (dPPR) proteins remains to be elucidated.
View Article and Find Full Text PDFSmall, secreted proteins have been found to play crucial roles in interactions between biotrophic/hemi-biotrophic pathogens and plants. However, little is known about the roles of these proteins produced by broad host-range necrotrophic phytopathogens during infection. Here, we report that a cysteine-rich, small protein SsSSVP1 in the necrotrophic phytopathogen Sclerotinia sclerotiorum was experimentally confirmed to be a secreted protein, and the secretion of SsSSVP1 from hyphae was followed by internalization and cell-to-cell movement independent of a pathogen in host cells.
View Article and Find Full Text PDFMicrobial opsins play a crucial role in responses to various environmental signals. Here, we report that the microbial opsin homolog gene sop1 from the necrotrophic phytopathogenic fungus Sclerotinia sclerotiorum was dramatically up-regulated during infection and sclerotial development compared with the vegetative growth stage. Further, study showed that sop1 was essential for growth, sclerotial development and full virulence of S.
View Article and Find Full Text PDFOur comparative genomic analysis showed that the numbers of plant cell wall (PCW)- and fungal cell wall (FCW)-degradation-associated carbohydrate-active enzymes (CAZymes) in necrotrophic and hemibiotrophic fungi are significantly larger than that in most biotrophic fungi. However, our transcriptional analyses of CAZyme-encoding genes in Melampsora larici-populina, Puccinia graminis and Sclerotinia sclerotiorum showed that many genes encoding PCW- and FCW-degradation-associated CAZymes were significantly up-regulated during the infection of both necrotrophic fungi and biotrophic fungi, indicating an existence of a universal mechanism underlying PCW degradation and FCW reorganization or modification, which are both intimately involved in necrotrophic and biotrophic fungal infection. Furthermore, our results showed that the FCW reorganization or modification was also related to the fungal development.
View Article and Find Full Text PDFCarbon fixation pathway of plants (CFPP) in photosynthesis converts solar energy to biomass, bio-products and biofuel. Intriguingly, a large number of heterotrophic fungi also possess enzymes functionally associated with CFPP, raising the questions about their roles in fungal development and in evolution. Here, we report on the presence of 17 CFPP associated enzymes (ten in Calvin-Benson-Basham reductive pentose phosphate pathway and seven in C4-dicarboxylic acid cycle) in the genome of Sclerotinia sclerotiorum, a heterotrophic phytopathogenic fungus, and only two unique enzymes: ribulose-1, 5-bisphosphate carboxylase-oxygenase (Rubisco) and phosphoribulokinase (PRK) were absent.
View Article and Find Full Text PDFPrion diseases in ruminants, especially sheep scrapie, cannot be fully explained by PRNP genetics, suggesting the influence of a second modulator gene. The SPRN gene is a good candidate for this role. The SPRN gene encodes the shadoo protein (Sho) which has homology to the PRNP gene encoding prion protein (PrP).
View Article and Find Full Text PDFThe PrP gene encodes the cellular isoform of the prion protein (PrP(c)) which has been shown to be crucial to the development of transmissible spongiform encephalopathies (TSEs). PrP knock-out mice, which do not express endogenous PrP(c), exhibit resistance to TSE disease. The regulation of PrP gene expression represents, therefore, a crucial factor in the development of TSEs.
View Article and Find Full Text PDF