Publications by authors named "Cuicui Lu"

The ability to generate Landau levels using a pseudomagnetic field (PMF), also called an artificial gauge field, opens up new pathways for exploring fundamental physics and developing novel applications based on topological protection. In this Letter, we simultaneously realize a PMF and a pseudoelectric field (PEF) on a photonic crystal platform and observe a rainbow effect of the Landau zeroth modes. While a PMF induces a series of discretized Landau levels of photons in a similar way as the quantum Hall effect for electrons, a PEF breaks the degeneracy of the flat band of Landau levels over a broad range.

View Article and Find Full Text PDF

Continuous development of photonic crystals (PCs) over the last 30 years has carved out many new scientific frontiers. However, creating tunable PCs that enable flexible control of geometric configurations remains a challenge. Here we present a scheme to produce a tunable plasma photonic crystal (PPC) 'kaleidoscope' with rich diversity of structural configurations in dielectric barrier discharge.

View Article and Find Full Text PDF

Background: Sunitinib is approved for the treatment of metastatic renal cell carcinoma (mRCC), imatinib-resistant gastrointestinal stromal tumors (GIST), and advanced pancreatic neuroendocrine tumors (PNET). This study aims to investigate the safety profiles of sunitinib through data mining of the US Food and Drug Administration Adverse Event Reporting System (FAERS).

Methods: The individual case safety reports (ICSRs) on sunitinib from 2006 Q1 to 2024 Q1 were collected from the ASCII data packages in the Food and Drug Administration Adverse Event Reporting System (FAERS).

View Article and Find Full Text PDF

Nonreciprocal transmission, resulting from the breaking of Lorentz reciprocity, plays a pivotal role in nonreciprocal communication systems by enabling asymmetric forward and backward propagations. Metasurfaces endowed with nonreciprocity represent a compact and facile platform for manipulating electromagnetic waves in an unprecedented manner. However, most passive metasurfaces that achieve nonreciprocal transmissions are polarization dependent.

View Article and Find Full Text PDF

Realizing a multifunctional integrated photonic platform is one of the goals for future optical information processing, which usually requires large size to realize due to multiple integration challenges. Here, we realize a multifunctional integrated photonic platform with ultracompact footprint based on inverse design. The photonic platform is compact with 86 inverse designed-fixed couplers and 91 phase shifters.

View Article and Find Full Text PDF

The topological photonics plays an important role in the fields of fundamental physics and photonic devices. The traditional method of designing topological system is based on the momentum space, which is not a direct and convenient way to grasp the topological properties, especially for the perturbative structures or coupled systems. Here, we propose an interdisciplinary approach to study the topological systems in real space through combining the information entropy and topological photonics.

View Article and Find Full Text PDF

Modulation of topological phase transition has been pursued by researchers in both condensed matter and optics research fields, and has been realized in Euclidean systems, such as topological photonic crystals, topological metamaterials, and coupled resonator arrays. However, the spin-controlled topological phase transition in non-Euclidean space has not yet been explored. Here, we propose a non-Euclidean configuration based on Möbius rings, and we demonstrate the spin-controlled transition between the topological edge state and the bulk state.

View Article and Find Full Text PDF

With the increasing prevalence of multidrug-resistant Gram-negative bacterial pathogens worldwide, antimicrobial resistance has become a significant public health concern. Ceftazidime-avibactam (CAZ-AVI) exhibited excellent activity against many carbapenemase-producing pathogens, and was widely used for the treatment of various complicated infections. CAZ-AVI is well tolerated across all dosing regimens, and its associated acute kidney injury (AKI) in phase II/III clinical trials is rare.

View Article and Find Full Text PDF

We present a groundbreaking and versatile approach to multi-mode rainbow trapping in photonic crystal waveguides (PCWs), overcoming long-standing limitations in photonic device design. Our innovative semi-bilayer PC design, formed by stacking two PCs, enables the realization of new photonic modes that were previously inaccessible, leading to enhanced device flexibility, improved performance, and increased resilience to defects and imperfections. By meticulously engineering a chirped PC within the PCW, we achieve multi-mode light trapping at distinct positions for different frequencies along the waveguide, effectively creating a rainbow of light.

View Article and Find Full Text PDF

Integrated frequency routers, which can guide light with different frequencies to different output ports, are an important kind of nanophotonic device. However, frequency routers with both a compact size and multiple channels are difficult to realize, which limits the application of these frequency routers in nanophotonics. Here, a kind of bandgap optimization algorithm, which consists of the finite element method and topology optimization, is proposed to design a multi-channel frequency router.

View Article and Find Full Text PDF

Topological photonics and topological photonic states have opened up a new frontier for optical manipulation and robust light trapping. The topological rainbow can separate different frequencies of topological states into different positions. This work combines a topological photonic crystal waveguide (topological PCW) with the optical cavity.

View Article and Find Full Text PDF

Topological polarization selection devices, which can separate topological photonic states of different polarizations into different positions, play a key role in the field of integrated photonics. However, there has been no effective method to realize such devices to date. Here, we have realized a topological polarization selection concentrator based on synthetic dimensions.

View Article and Find Full Text PDF

The on-chip integrated visible microlaser is a core unit of high-speed visible-light communication with huge bandwidth resources, which needs robustness against fabrication errors, compressible linewidth, reducible threshold, and in-plane emission. However, until now, it has been a great challenge to meet these requirements simultaneously. Here, we report a scalable strategy to realize a robust on-chip integrated visible microlaser with further improved lasing performances enabled by the increased orders () of exceptional surfaces, and experimentally verify the strategy by demonstrating the performances of a second-order exceptional surface-tailored microlaser.

View Article and Find Full Text PDF

Intelligent materials with adaptive response to external stimulation lay foundation to integrate functional systems at the material level. Here, with experimental observation and numerical simulation, we report a delicate nano-electro-mechanical-opto-system naturally embedded in individual multiwall tungsten disulfide nanotubes, which generates a distinct form of in-plane van der Waals sliding ferroelectricity from the unique combination of superlubricity and piezoelectricity. The sliding ferroelectricity enables programmable photovoltaic effect using the multiwall tungsten disulfide nanotube as photovoltaic random-access memory.

View Article and Find Full Text PDF

The gain and loss in photonic lattices provide possibilities for many functional phenomena. In this Letter, we consider photonic topological insulators with different types of gain-loss domain walls, which will break the translational symmetry of the lattices. A method is proposed to construct effective Hamiltonians, which accurately describe states and the corresponding energies at the domain walls for different types of photonic topological insulators and domain walls with arbitrary shapes.

View Article and Find Full Text PDF

Immunofluorescence imaging of cells plays a vital role in biomedical research and clinical diagnosis. However, when it is applied to relative quantification of proteins, it suffers from insufficient fluorescence intensity or partial overexposure, resulting in inaccurate relative quantification. Herein, we report a computer-aided design of DNA self-limited assembly (CAD-SLA) technology and apply it for relative quantification of membrane proteins, a concept proposed for the first time.

View Article and Find Full Text PDF

Non-Hermitian topological effects are of crucial importance both in fundamental physics and applications. Here we discover the gain-loss-induced hybrid second-order skin-topological effect and the PT phase transition in skin-topological modes. By studying a non-Hermitian Haldane model, we find that the topological edge modes are localized on a special type of corner, while the bulk modes remain extended.

View Article and Find Full Text PDF

The era of Big Data requires nanophotonic chips to have large information processing capacity. Multiple frequency on-chip nanophotonic devices are highly desirable for density integration, but such devices are more susceptible to structural imperfection because of their nano-scale. Topological photonics provides a robust platform for next-generation nanophotonic chips.

View Article and Find Full Text PDF

In situ spatial proteomics analysis of a single cell has not been achieved yet, mainly because of insufficient throughput and sensitivity of current techniques. Recent progress on immuno-nucleic acid amplification technology presents tremendous opportunities to address this issue. Here, we report an innovative hybridization chain reaction (HCR) technique that involves computer-aided design (CAD) and reversible assembly.

View Article and Find Full Text PDF

The topological nanophotonic wavelength router, which can steer light with different wavelength signals into different topological channels, plays a key role in optical information processing. However, no effective method has been found to realize such a topological nanophotonic device. Here, an on-chip topological nanophotonic wavelength router working in an optical telecom band is designed based on a topology optimization algorithm and experimentally demonstrated.

View Article and Find Full Text PDF

Breast cancer is the most common malignancy among women worldwide, excluding non-melanoma skin cancer. It is now well understood that breast cancer is a heterogeneous entity that exhibits distinctive histological and biological features, treatment responses and prognostic patterns. Therefore, the identification of novel ideal diagnostic and prognostic biomarkers is of utmost importance.

View Article and Find Full Text PDF

A paradigm for high-quality factor (Q) with a substantial fulfillment for appraising sensing ability and performance has been investigated. Through constructing a 1D (one-dimensional) topological photonic crystal (PhC) mirror heterostructure, which is formed by the image view of 1D topological PhC stacking with its original one. In the 1D topological PhC-mirror heterostructure, there is an interesting mode that appeared with the symmetric, typical Lorentzian-line shape with 100% transmittance in the topological mirror edge-state mode (hybrid resonance mode) at the heterostructure interface.

View Article and Find Full Text PDF

Synthetic dimension provides a new platform for realizing topological photonic devices. Here, we propose a method to realize a rainbow concentrator of topological photonic states based on the synthetic dimension concept. The synthetic dimension is constructed using a translational degree of freedom of the nanostructures inside the unit cell of a two-dimensional photonic crystal.

View Article and Find Full Text PDF

Topological photonic crystal provides a robust platform for nanophotonic devices. However, few reports have been found to realize multiple frequency routing based on topological photonic states, which have restricted further applications in the field of nanophotonic devices. Here, for the first time, to the best of our knowledge, we propose an efficient method to realize a topological rainbow based on graded dielectric topological photonic crystals, which are constructed by changing the degree of lattice contraction and expansion.

View Article and Find Full Text PDF

Nonreciprocity is important in both optical information processing and topological photonics studies. Conventional principles for realizing nonreciprocity rely on magnetic fields, spatiotemporal modulation, or nonlinearity. Here we propose a generic principle for generating nonreciprocity by taking advantage of energy loss, which is usually regarded as harmful.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session8mbd9qba9ghk1tkkhtmdnub0rhfa2k7v): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once