Publications by authors named "CuiPing Zeng"

This study investigated the molecular mechanism behind the highly efficient performance of nitrogen-doped carbon dots (NCDs)-assisted microbial electrosynthesis systems (MESs). The impact of NCDs (C:N precursor = 1:0.5-1:3) on acetogens was examined in the biocathode.

View Article and Find Full Text PDF

Nanomaterial-microorganism hybrid systems (NMHSs), integrating semiconductor nanomaterials with microorganisms, present a promising platform for broadband solar energy harvesting, high-efficiency carbon reduction, and sustainable chemical production. While studies underscore its potential in diverse solar-to-chemical energy conversions, prevailing NMHSs grapple with suboptimal energy conversion efficiency. Such limitations stem predominantly from an insufficient systematic exploration of the mechanisms dictating solar energy flow.

View Article and Find Full Text PDF

Tumor metabolite regulation is intricately linked to cancer progression. Because lactate is a characteristic metabolite of the tumor microenvironment (TME), it supports tumor progression and drives immunosuppression. In this study, we presented a strategy for antitumor therapy by developing a nanogold-engineered (R.

View Article and Find Full Text PDF

The development of semi-artificial photosynthetic systems, which integrate metal-organic frameworks (MOFs) with industrial microbial cell factories for light-driven synthesis of fuels and valuable chemicals, represents a highly promising avenue for both research advancements and practical applications. In this study, an MOF (PCN-222) utilizing racemic-(4-carboxyphenyl) porphyrin and zirconium chloride (ZrCl) as primary constituents is synthesized. Employing a self-assembly process, a hybrid system is constructed, integrating engineered Escherichia coli (E.

View Article and Find Full Text PDF

Background Limited data are available for postpartum hypertension prediction after preeclampsia. Methods and Results We examined the association between maternal serum chemerin levels in patients with preeclampsia and blood pressure (BP) levels after delivery in a prospective birth cohort of 15 041 singleton pregnant women. A total of 310 cases among 322 patients with preeclampsia (follow-up rate, 96.

View Article and Find Full Text PDF

Many expression data showed miRNAs have a potential function on regulating gonadal differentiation in animals, but their function is rarely studied in vivo, especially in chickens. Using the comprehensive expression profiles analysis, the specific male-biased miR-2954, which is significantly higher expressed in male embryos and gonads at all detected stages, was firstly screened during the early stages of chicken embryogenesis and gonadogenesis. In sex-reversed female gonads treated with aromatase inhibitors, the expression of miR-2954 was increased, which was consistent with the up-regulation of and .

View Article and Find Full Text PDF

L-citrulline (L-cit) is a key intermediate in the urea cycle and is known to possess antioxidant and anti-inflammation characteristics. However, the role of L-cit in ameliorating oxidative damage and immune dysfunction against iron overload in the thymus remains unclear. This study explored the underlying mechanism of the antioxidant and anti-inflammation qualities of L-cit on iron overload induced in the thymus.

View Article and Find Full Text PDF

The aim of this study was to investigate the ecological role of quorum-sensing signaling molecule on the autotrophic biocathode for CO reduction and acetate synthesis. As a typical quorum-sensing signaling molecule, N-Hexanoyl-L-homoserine lactone (C6HSL) was used to regulate the construction of cathode biofilm. Results showed that the maximum acetate production from CO reduction improved by 94.

View Article and Find Full Text PDF

The aim of this study was to investigate the feasibility of sulfate removal and elemental sulfur (S) recovery in the single-chamber bioelectrochemical system (S-BES). The performance of S-BES was compared with that of dual-chamber bioelectrochemical system (D-BES). The S-BES was constructed with graphite felt as the anode and graphite brush as the cathode.

View Article and Find Full Text PDF

Previous studies have shown that gga-miR-2954 was highly expressed in the gonads and other tissues of male chickens, including muscle tissue. , which has functions in mammalian skeletal muscle development, was predicted to be a target gene of gga-miR-2954. The purpose of this study was to investigate whether gga-miR-2954 plays a role in skeletal muscle development by targeting , and evaluate its function in the sexual dimorphism development of chicken muscle.

View Article and Find Full Text PDF

The aim of this study was to investigate the performance of single-chamber MEC under applied voltages higher than that for water electrolysis. With different acetate concentrations (1.0-2.

View Article and Find Full Text PDF

with crude glycerol-utilizing and hydrogen (H)-producing abilities was successfully isolated from return activated sludge from Shatin Sewage Treatment Works. The H production strategy used in this study was optimized with crude glycerol concentrations, and 1,020 μmol of H was generated in 3 h. An organic-microbe hybrid system was constructed with metal-free hydrothermal carbonation carbon (HTCC) microspheres to enhance the H production under visible light (VL) irradiation.

View Article and Find Full Text PDF

African swine fever (ASF) is an infectious transboundary disease of domestic pigs and wild boar and spreading throughout Eurasia. There is no vaccine and treatment available. Complex immune escape strategies of African swine fever virus (ASFV) are crucial factors affecting immune prevention and vaccine development.

View Article and Find Full Text PDF

In this study, carbon quantum dots (CQDs) were used to decorate a TiO/g-CN (TCN) film electrode. The morphological, optical, and electrochemical properties of the TiO/g-CN/CQDs nanorod arrays (TCNC NRAs) film were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence (PL), and electrochemical impedance spectroscopy (EIS). The improved optical properties, photoelectrochemical properties and photoelectrocatalytic (PEC) performance of photoanode can be observed by doping CQDs onto the TCN NRAs film.

View Article and Find Full Text PDF

Elemental sulfur recover from sulfate-rich environment has great significance for the sustainable development of environment and energy. This study aimed to realize simultaneous sulfate reduction and elemental sulfur recovery using a novel photoelectricity microbial electrolysis cell (PMEC) under low applied voltages. At an applied voltage of 1.

View Article and Find Full Text PDF

Extracellular electron transfer (EET) is a significant pathway to transport electrons between bacteria and electrode in microbial electrosynthesis systems (MESs). To enhance EET in the MES, a high-conductivity polymer, polypyrrole (PPy), was coated on the surface of mixed culture acetogens in situ and the PPy-coated bacteria were inoculated on the cathode of MES. The charge transfer resistance of PPy-coated biocathode was 33%-70% of that with PPy-uncoated.

View Article and Find Full Text PDF

Photocatalysis provides a "green" strategy to produce the clean energy of H. However, the realization of efficient H production is usually accomplished by the consumption of electron donors, which are costly energy carriers themselves. Here, we attempted to utilize the naturally abundant humic acid (HA), a representative natural organic matter (NOM), as the source of electron donor in a cascading oxic-anoxic photocatalytic system.

View Article and Find Full Text PDF

The transmission of T-2 toxin and its metabolites into the edible tissues of poultry has potential effects on human health. The bile acid and xenobiotic system composes an intricate physiological network of chemoprotective and transporter-related functions, which ensures the detoxification and removal of harmful xenobiotic and endobiotic compounds from the body. This study revealed that cholic acid (CA), as one of the bile acids, promoted the metabolism of T-2 toxin in vivo by inducing the xenobiotic metabolism enzymes expression, thereby increasing the stress resistance and attenuating the oxidative stress.

View Article and Find Full Text PDF

The aim of this study was to investigate hydrogen production enhanced by methanogenesis inhibition in the single-chamber microbial electrolysis cell (MEC) under alkaline conditions. With 50 mM bicarbonate buffer and 1 g L acetate, the MEC was tested at pH = 8.5, 9.

View Article and Find Full Text PDF

Pig transportation is associated with intestinal oxidative stress and results in destruction of intestinal integrity. Autophagy has been contributed to maintain cell homeostasis under stresses. The purpose of this study was to evaluate the effects of transport stress on morphology, intestinal mucosal barrier and autophagy/mitophagy levels in pig jejunum.

View Article and Find Full Text PDF

Microbial electrosynthesis systems (MESs) can convert carbon dioxide into added value compounds using microorganisms as catalyst, which is expected to help achieve conversion of greenhouse gases into resources. However, the synthetic efficiency of MESs is far behind the industry requirements. In this study, carbon cloth surfaces were bonded with carboxyl groups by electrochemical reduction of aryl diazonium salts and then used as a cathode in MESs reactors.

View Article and Find Full Text PDF

This study aimed to enhance treatment of wastewater containing nitrobenzene (NB) and sulfate using biocathode enriched with sulfate-reducing bacteria in microbial electrolysis cell (MEC). Artificial wastewater with 50 mg L NB and 200 mg L sulfate was used as the catholyte. With 0.

View Article and Find Full Text PDF

This study aimed to investigate the graphene oxide (GO) conversion by the sulfate-reducing biocathode and its modified effects on performance of the microbial electrolysis cell (MEC). Biocathodes were acclimated with autotrophic sulfate-reducing cultures using medium containing 500 mg L sulfate. Sulfate reductive rate in the MEC was 230 and 135 g m d, respectively, with and without 30 mg L GO addition.

View Article and Find Full Text PDF

The removal efficiencies of environmental pollutants in a microbial electrolysis system (MES) with a biocathode are highly affected by the externally applied voltage. Although the cathode biofilm plays a key role in the pollution removal, its response to the applied voltage is still unknown. A two-chambered MES with a biocathode was constructed to study the impact of the different applied voltages (0.

View Article and Find Full Text PDF

The aim of this study was to investigate the development of cathodic biofilm and its effect on methane production in a single-chamber microbial electrolysis cell (MEC). The MEC with 1 g/L acetate was successfully operated within 31 cycles (∼2400 h). The maximum methane production rate and average current capture efficiency in the MEC reached 93 L/m·d and 82%, respectively.

View Article and Find Full Text PDF