Background: Both lipid metabolism and cyclic RNAs (circRNAs) have been found to be involved in pancreatic adenocarcinoma (PAAD) progression, but the relationship between lipid metabolism and circRNAs remains unclear.
Methods: The expression levels of miR-223-3p, circ_0124346, and acyl-CoA synthetase long chain family member 3 (ACSL3) were determined through qRT-PCR and Western blot analysis. Cell proliferation was evaluated using the CCK-8 and EdU incorporation assays.
Circular RNAs (circRNAs) showing unusual expressions have been discovered in pancreatic adenocarcinoma (PAAD). However, the functions and underlying mechanisms of these circRNAs still remain largely unclear. Our current study discovered a notable increase in the expression of circRNA hsa_circ_0002395 (circ_0002395) in both PAAD tissues and cell lines.
View Article and Find Full Text PDFBackground: Circular RNAs (circRNAs) or cholesterol metabolism have been demonstrated to participate in stomach adenocarcinoma (STAD) progression. However, the relationship between circRNAs and cholesterol metabolism in STAD and its underlined mechanism remain unclear.
Methods: RNA and protein expression levels were detected by qRT-PCR and Western blot.
CircRNAs have been found to play crucial roles in the metabolism and progression of cancers, but their roles and mechanisms in esophageal squamous cell carcinoma (ESCC) have not been fully elucidated. This work is aimed to explore the role and mechanism of hsa_circ_0000705 (circ_0000705) in ESCC. Circ_0000705 expression was up-regulated in ESCC tissues and cell lines, and high circ_0000705 expression was correlated with poor survival.
View Article and Find Full Text PDFIncreasing studies indicate that circular RNAs (circRNAs) play critical roles in tumor metabolism of multiple cancers. However, the contribution of circRNAs in glutamine metabolism of esophageal squamous cell carcinoma (ESCC) remains elusive. The objective of this research was to investigate the role and mechanism of circRNA hsa_circ_0001093 (circ_0001093) in the glutamine metabolism and tumorigenesis of ESCC.
View Article and Find Full Text PDFBackground: LncRNA dysregulation is implicated in esophageal squamous cell carcinoma (ESCC) progression; However, the precise role and function of lncRNA MAFG-AS1 in ESCC remains unknown.
Materials And Methods: Expressions of MAFG-AS1, miR-765, PDX1, GLUT1 and LDH-A were detected via qRT-PCR or/and Western blot in ESCC tissues and cell lines. CCK-8, transwell and glycolysis assays were used to investigate the effects of MAFG-AS1 on ESCC cell proliferation, migration, invasion and aerobic glycolysis after knockdown or overexpression of MAFG-AS1, and bioinformatics analyses, RNA pull-down and dual luciferase reporter systems were applied to investigate the interaction between MAFG-AS1, miR-765 and PDX1.
Sporamin, a sweet potato tuber storage protein, is a Kunitz-type trypsin inhibitor (TI) that has exhibited antitumor activity through poorly defined mechanisms in a number of types of tumor cells. The present study aimed to analyze the combined effects of sporamin and three mitogen-activated protein kinase (MAPK) inhibitors, PD98059, SP600125 and SB203580, on the pancreatic cancer cell line, PANC-1. Cell proliferation activity was assessed using a H-thymidine incorporation assay, and cell viability was analyzed using an MTT assay.
View Article and Find Full Text PDFThe aim of the present study was to determine whether sporamin, a trypsin inhibitor, suppresses the growth of human esophageal squamous cell carcinoma (ESCC) cells in vitro. Sporamin treatment led to the suppression of viability and proliferation of human ESCC cell lines, EC9706 and EC109, as determined by MTT and [3H] thymidine incorporation assays, respectively. Flow cytometry and fluorescence microscopy demonstrated that sporamin significantly induced apoptosis in EC9706 and EC109 cells.
View Article and Find Full Text PDFOverexpression of Notch4 is associated with a variety of tumor types. Only sparse information exists on Notch4 expression in pancreatic cancer (PC). The present study demonstrated that Notch4 expression was significantly upregulated in PC cell lines compared with a non-transformed pancreatic epithelial cell line, HPDE6c-7.
View Article and Find Full Text PDFFascin protein plays important roles in tumor metastasis and is prognostically relevant to human gastric cancer (GC). However, its role in the development and progression of GC has not been comprehensively investigated. In the present study, results revealed that upregulation of fascin by interleukin-6 promotes GC cell migration and invasion in a signal transducer and activator of transcription 3 (STAT3)-dependent manner in MKN45 cells.
View Article and Find Full Text PDFAims: To analyze the combined impact of the histone deacetylase inhibitor (HDACI) Trichostatin A (TSA) and the extracellular-signal-regulated kinase 1/2 (ERK1/2) inhibitor PD98059 on gastric cancer (GC) cell line SGC7901 growth.
Main Methods: SGC7901 cells were treated with TSA, PD98059 or with a TSA-PD98059 combination. Effects of drug treatment on tumor cell proliferation, apoptosis, cell cycle progression, and cell signaling pathways were investigated by MTS assay, flow cytometry, Western blotting, chromatin immunoprecipitation (ChIP) assay, electrophoretic mobility shift assay (EMSA), and luciferase reporter assay, respectively.
The conventional view of Janus kinase 2 (JAK2) is a nonreceptor tyrosine kinase which transmits information to the nucleus via the signal transducer and activator of transcriptions (STATs) without leaving the cytoplasm. However, accumulating data suggest that JAK2 may signal by exporting from cytoplasm to nucleus, where it guides the transcriptional machinery independent of STATs protein. Recent studies demonstrated that JAK2 is a crucial component of signaling pathways operating in the nucleus.
View Article and Find Full Text PDF