Publications by authors named "Cui-E Zhao"

During the past decade, biofuel cells (BFCs) have emerged as an emerging technology on account of their ability to directly generate electricity from biologically renewable catalysts and fuels. Due to the boost in nanotechnology, significant advances have been accomplished in BFCs. Although it is still challenging to promote the performance of BFCs, adopting nanostructured materials for BFC construction has been extensively proposed as an effective and promising strategy to achieve high energy production.

View Article and Find Full Text PDF

The enhancement of microbial activity and electrocatalysis through the design of new anode materials is essential to develop microbial fuel cells (MFCs) with longer lifetimes and higher output. In this research, a novel anode material, graphene/Fe O (G/Fe O ) composite, has been designed for Shewanella-inoculated MFCs. Because the Shewanella species could bind to Fe O with high affinity and their growth could be supported by Fe O , the bacterial cells attached quickly onto the anode surface and their long-term activity improved.

View Article and Find Full Text PDF

Promoting the performance of microbial fuel cells (MFCs) relies heavily on the structure design and composition tailoring of electrode materials. In this work, three-dimensional (3D) macroporous graphene foams incorporated with intercalated spacer of multiwalled carbon nanotubes (MWCNTs) and bacterial anchor of Fe3O4 nanospheres (named as G/MWCNTs/Fe3O4 foams) were first synthesized and used as anodes for Shewanella-inoculated microbial fuel cells (MFCs). Thanks to the macroporous structure of 3D graphene foams, the expanded electrode surface by MWCNTs spacing, as well as the high affinity of Fe3O4 nanospheres toward Shewanella oneidensis MR-1, the anode exhibited high bacterial loading capability.

View Article and Find Full Text PDF

To meet the ever-increasing requirements for the next generation of sustainable and versatile energy-related devices, conjugated polymers, which have potential advantages over small molecules and inorganic materials, are among the most promising types of green candidates. The properties of conjugated polymers can be tuned through modification of the structure and incorporation of different functional moieties. In addition, superior performances can be achieved as a result of the advantages of nanostructures, such as their large surface areas and the shortened pathways for charge transfer.

View Article and Find Full Text PDF

A great challenge in wastewater bioremediation is the sustained activity of viable microorganisms, which can contribute to the breakdown of waste contaminants, especially in alkaline pH conditions. Identification of extremophiles with bioremediation capability can improve the efficiency of wastewater treatment. Here, we report the discovery of an electrochemically active alkaliphilic halotolerant bacterium, Anditalea andensis ANESC-ST (=CICC10485T=NCCB 100412T), which is capable of generating bioelectricity in alkaline-saline conditions.

View Article and Find Full Text PDF

Water-soluble conjugated oligoelectrolyte nanoparticles (COE NPs), consisting of a cage-like polyhedral oligomeric silsesquioxanes (POSS) core equipped at each end with pendant groups (oligo(p-phenylenevinylene) electrolyte, OPVE), have been designed and demonstrated as an efficient strategy in increasing the current generation in Escherichia coli microbial fuel cells (MFCs). The as-prepared COE NPs take advantage of the structure of POSS and the optical properties of the pendant groups, OPVE. Confocal laser scanning microscopy showed strong photoluminescence of the stained cells, indicating spontaneous accumulation of COE NPs within cell membranes.

View Article and Find Full Text PDF

The flexible and low-cost polypyrrole nanotube membrane is demonstrated as a promising anode in microbial fuel cells, which significantly enhances the extracellular electron transfer between Shewanella oneidensis MR-1 and the electrode, owing to the large active surface area and high electrical conductivity.

View Article and Find Full Text PDF

A novel electrochemical biosensing platform for nicotinamide adenine dinucleotide (NAD(+))-dependent dehydrogenase catalysis was designed using the nitrogen-doped graphene (NG), which had properties similar to NADH dehydrogenase (CoI). NG mimicked flavin mononucleotide (FMN) in CoI and efficiently catalyzed NADH oxidation. NG also acted as an electron transport "bridge" from NADH to the electrode due to its excellent conductivity.

View Article and Find Full Text PDF

A new nanostructured graphene/TiO2 (G/TiO2) hybrid was synthesized by a facile microwave-assisted solvothermal process in which amorphous TiO2 was assembled on graphene in situ. The resulting G/TiO2 hybrids were characterized by XRD, SEM, TEM, Raman spectroscopy, and N2 adsorption/desorption analysis. The electrochemical properties of the hybrids as anode materials for Shewanella-inoculated microbial fuel cells (MFCs) were studied for the first time, and they proved to be effective in improving MFC performance.

View Article and Find Full Text PDF

A microbial fuel cell (MFC) is an innovative power-output device, which utilizes microorganisms to metabolize fuel and transfers electrons to the electrode surface. In this study, we decorated the surface of graphene (G) with a conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), through galvanostatic electropolymerization to fabricate a G/PEDOT hybrid anode for an Escherichia coli MFC. Cyclic voltammetry and electrochemical impedance spectroscopy analyses illustrated that the G/PEDOT hybrid anode possesses a larger active surface area and lower charge-transfer resistance than three other kinds of anodes, namely, carbon paper (CP), graphene-modified carbon paper (CP/G), and PEDOT-modified carbon paper (CP/PEDOT).

View Article and Find Full Text PDF