Publications by authors named "Cui Liuqing"

The decline of endothelial autophagy is closely related to vascular senescence and disease, although the molecular mechanisms connecting these outcomes in vascular endothelial cells (VECs) remain unclear. Here, we identify a crucial role for CD44, a multifunctional adhesion molecule, in controlling autophagy and ageing in VECs. The CD44 intercellular domain (CD44ICD) negatively regulates autophagy by reducing PIK3R4 and PIK3C3 levels and disrupting STAT3-dependent PtdIns3K complexes.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on a pathogenic fungus that causes root rot and leaf spot in wheat, highlighting the need for alternatives to chemical fungicides due to environmental concerns.
  • An antagonistic bacterium named DB2 was isolated, showing a 92.67% inhibition rate against the fungus, and demonstrated significant effects on the fungus's structure and cellular integrity.
  • The findings suggest that DB2 could serve as an effective biocontrol agent for managing this wheat pathogen while simultaneously promoting wheat seedling growth.
View Article and Find Full Text PDF

FBXW8 plays an irreplaceable role in the substrate recognition of ubiquitin-dependent proteolysis, which further regulates cell cycle progression and signal transduction. However, the abnormal expression of FBXW8 triggers malignancy, inflammation, and autophagy irregulation. FBXW8 is considered as an effective therapeutic target for Cullin-RING ligase 7 (CRL7)-related cancers.

View Article and Find Full Text PDF

Autophagy has been recognized as a stress tolerance mechanism that maintains cell viability, which contributes to tumor progression, dormancy, and treatment resistance. The inhibition of autophagy in cancer has the potential to improve the therapeutic efficacy. It is therefore of great significance to search for new autophagy inhibitors.

View Article and Find Full Text PDF

Surface-modified mesoporous silica nanoparticles (MSNs) have attracted more and more attention as promising materials for biomolecule delivery. However, the lack of detailed evaluation relevant to the potential cytotoxicity of these MSNs is still a major obstacle for their applications. Unlike the bare MSNs and amino- or liposome-modified MSNs, we found that polyethylenimine-modified MSNs (MSNs-PEI) had no obvious toxicity to human umbilical vein endothelial cells (HUVECs) at the concentrations up to 100 μg/mL.

View Article and Find Full Text PDF

Ethanol often accumulates during the process of wine fermentation, and mitophagy has critical role in ethanol output. However, the relationship between mitophagy and ethanol stress is still unclear. In this study, the expression of and genes exposed to ethanol stress was accessed by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR).

View Article and Find Full Text PDF

Currently, particular focus is placed on the implication of autophagy in a variety of human diseases, including cancer. Discovery of small-molecule modulators of autophagy as well as their potential use as anti-cancer therapeutic agents would be of great significance. To this end, a series of curcumin analogs previously synthesized in our laboratory were screened.

View Article and Find Full Text PDF

Background: Hypoxia-mediated chemoresistance has been regarded as an important obstacle in the development of cancer treatment. Knockdown of krüppel-like factor 5 (KLF5) was reported to inhibit hypoxia-induced cell survival and promote cell apoptosis in non-small cell lung cancer (NSCLC) cells via direct regulation of hypoxia inducible factor-1α (HIF-1α) expression. However, the roles of KLF5 in the development of hypoxia-induced cisplatin (DDP) resistance and its underlying mechanism in NSCLC cells remain to be further elucidated.

View Article and Find Full Text PDF

The importance of macroautophagy (hereafter referred to as autophagy) in vascular endothelial cell (VEC) biology and dysfunction is increasingly recognized, but the molecular mechanisms of autophagy in VECs in the presence of serum are still poorly understood. Previously, we identified pterostilbene as a potent autophagy inducer of VECs in the presence of serum. In this study, we used pterostilbene as a tool to induce VEC autophagy and identified the differentially expressed genes using high-throughput DAN microarray.

View Article and Find Full Text PDF

Despite the considerable use of magnetic ferroferric oxide nanoparticles (Fe3O4NPs) worldwide, their safety is still an important topic of debate. In the present study, we detected the toxicity and biological behavior of bare-Fe3O4NPs (B-Fe3O4NPs) on human umbilical vascular endothelial cells (HUVECs). Our results showed that B-Fe3O4NPs did not induce cell death within 24h even at concentrations up to 400 μg/ml.

View Article and Find Full Text PDF

Context: trans-3,4,5,4'-Tetramethoxystilbene (DMU-212), an derivative of resveratrol, shows strong antiproliferative activities against many cancer cells. In our previous study, we demonstrated that DMU-212 possesses potent proapoptosis and antiangiogenesis effects on vascular endothelial cells (VECs), which made it a promising agent for the treatment of angiogenesis-related diseases.

Objective: We studied the gene expression profile of DMU-212-treated VECs to gain further insight into the mechanisms by which DMU-212 exerts its potent pro-apoptosis and antiangiogenesis effects.

View Article and Find Full Text PDF

Cell labeling with magnetic iron oxide nanoparticles (IONPs) is increasingly a routine approach in the cell-based cancer treatment. However, cell labeling with magnetic IONPs and their leading effects on the biological properties of human lung carcinoma cells remain scarcely reported. Therefore, in the present study the magnetic γ-FeO nanoparticles (MNPs) were firstly synthesized and surface-modified with cationic poly-l-lysine (PLL) to construct the PLL-MNPs, which were then used to magnetically label human A549 lung cancer cells.

View Article and Find Full Text PDF

Macroautophagy (autophagy) is an important factor affecting the function of vascular endothelial cells (VECs) and must be tightly regulated in these cells. However, the precise mechanisms underlying this process, particularly in the presence of serum, remain obscure. In this study, we identified trans-3,5,4'-trimethoxystilbene (TMS) as a potent small molecule inducer of autophagy in human umbilical vascular endothelial cells (HUVECs) in the presence of serum.

View Article and Find Full Text PDF

Superparamagnetic nanoparticle-based polymer microbeads utilized as carriers are attractive materials widely applied in the biomedical field. However, the deficiency of toxicity, biocompatibility, and biodegradability for polymer materials often limits the application of these microbeads. In the present study, magnetic albumin microbeads (MAMbs), i.

View Article and Find Full Text PDF

Although the C-terminal motor and the N-terminal myosin-like domains of KCBP in Dunaliella salina (DsKCBP) are implicated in interaction with the microtubules, its microtubule binding property has not been addressed. It has been shown that several calmodulin isoforms suppress the microtubule binding activity of KCBP, but whether the calmodulin-like protein (CLP) has this ability remains unknown. The results of our previous study showed that there are two microtubule binding sites in DsKCBP, motor domain at the C-terminus and MyTH4-FREM at the N-terminus.

View Article and Find Full Text PDF

Angiogenesis plays an important role in many pathological processes. Identification of novel anti-angiogenic agents will provide new insights into the mechanisms for angiogenesis as well as potential lead compounds for developing new drugs. In the present study, a series of resveratrol methylated derivatives have been synthesized and screened.

View Article and Find Full Text PDF

Chemical modulators of macroautophagy (herein referred to as autophagy) have aroused widespread interest among biologists and clinical physicians because of their potential for disease therapy. Pterostilbene (PT), a natural small-molecular compound, has been demonstrated to inhibit oxidized low-density lipoprotein (oxLDL)-induced apoptosis in vascular endothelial cells (VECs). The aim of the present study was to investigate whether and how PT could induce VEC autophagy.

View Article and Find Full Text PDF

Although glucose-6-phosphate isomerase (GPI) plays an important role in glycolysis of both the prokaryotes and eukaryotes, studies on the GPI have not been involved in the halotolerant, unicellular green alga Dunaliella salina (D. salina). In this study, a 2,338 bp of full-length cDNA cloned using rapid amplification of cDNA end (RACE) technique contained an open reading frame (ORF) of 1,980 bp encoding 660 amino acids, which has a predicted molecular weight of 73.

View Article and Find Full Text PDF