Publications by authors named "Cuddington K"

Traditionally, mathematical models in ecology placed an emphasis on asymptotic, long-term dynamics. However, a large number of recent studies highlighted the importance of transient dynamics in ecological and eco-evolutionary systems, in particular 'long transients' that can last for hundreds of generations or even longer. Many models as well as empirical studies indicated that a system can function for a long time in a certain state or regime (a 'metastable regime') but later exhibits an abrupt transition to another regime not preceded by any parameter change (or following the change that occurred long before the transition).

View Article and Find Full Text PDF

Dog vaccination is the key to controlling rabies in human populations. However, in countries like India, with large free-roaming dog populations, vaccination strategies that rely only on parenteral vaccines are unlikely to be either feasible or successful. Oral rabies vaccines could be used to reach these dogs.

View Article and Find Full Text PDF

There is a growing recognition that ecological systems can spend extended periods of time far away from an asymptotic state, and that ecological understanding will therefore require a deeper appreciation for how long ecological transients arise. Recent work has defined classes of deterministic mechanisms that can lead to long transients. Given the ubiquity of stochasticity in ecological systems, a similar systematic treatment of transients that includes the influence of stochasticity is important.

View Article and Find Full Text PDF

The underlying biological processes that govern many ecological systems can create very long periods of transient dynamics. It is often difficult or impossible to distinguish this transient behaviour from similar dynamics that would persist indefinitely. In some cases, a shift from the transient to the long-term, stable dynamics may occur in the absence of any exogenous forces.

View Article and Find Full Text PDF

Understanding ecological processes and predicting long-term dynamics are ongoing challenges in ecology. To address these challenges, we suggest an approach combining mathematical analyses and Bayesian hierarchical statistical modeling with diverse data sources. Novel mathematical analysis of ecological dynamics permits a process-based understanding of conditions under which systems approach equilibrium, experience large oscillations, or persist in transient states.

View Article and Find Full Text PDF

This paper discusses the recent progress in understanding the properties of transient dynamics in complex ecological systems. Predicting long-term trends as well as sudden changes and regime shifts in ecosystems dynamics is a major issue for ecology as such changes often result in population collapse and extinctions. Analysis of population dynamics has traditionally been focused on their long-term, asymptotic behavior whilst largely disregarding the effect of transients.

View Article and Find Full Text PDF

Species that facilitate others under stressful conditions are often ecosystem engineers: organisms that modify or create physical habitat.However, the net effect of an engineering species on another depends on both the magnitude of the direct interactions (e.g.

View Article and Find Full Text PDF

The importance of transient dynamics in ecological systems and in the models that describe them has become increasingly recognized. However, previous work has typically treated each instance of these dynamics separately. We review both empirical examples and model systems, and outline a classification of transient dynamics based on ideas and concepts from dynamical systems theory.

View Article and Find Full Text PDF

Plant morphology influences insect predators' abilities to capture prey and control pest populations. Several mechanisms for this effect of plants on predator foraging have been proposed. In particular, it is often claimed that increased complexity of plant structures may increase search time and reduce foraging success.

View Article and Find Full Text PDF

We find that spatial structure, and in particular, differences in gross plant morphology, can alter the consumption rates of generalist insect predators. We compared Asian lady beetle, Harmonia axyridis Pallas, and green lacewing larvae, Chrysoperla carnea Stephens, consumption rates of pea aphids, Acyrthosiphon pisum Harris, in homogeneous environments (petri dishes) and heterogeneous environments (whole plants). Spatial complexity is often described as reducing predator success, and we did find that predators consumed significantly more aphids on leaf tissue in petri dishes than on whole plants with the same surface area.

View Article and Find Full Text PDF

It has been claimed that plant architecture can alter aphid reproductive rates, but the mechanism driving this effect has not been identified. We studied interactions between plant architecture, aphid density, environmental conditions, and nutrient availability on the reproduction of pea aphids [Acyrthosiphon pisum (Harris)] using four near-isogenic peas (Pisum sativum L.) that differ in morphology.

View Article and Find Full Text PDF

All organisms alter their abiotic environment, but ecosystem engineers are species with abiotic effects that may have to be explicitly accounted for when making predictions about population and community dynamics. The goal of this analysis is to identify those conditions in which engineering leads to population dynamics that are qualitatively different than one would predict using models that incorporate only biotic interactions. We present a simple model coupling an ecosystem engineer and the abiotic environment.

View Article and Find Full Text PDF

We investigate a recent proposal that invasive species display patterns of spatial "spread regulation" analogous to density-dependent regulation of population abundances. While invasive species do offer valuable tests of ecological theories about spatial spread, we argue that the statistical approach used in the study is not useful, and that the proposed definition of "spread regulation" is likely to be confusing. While concepts of negative feedbacks in spatial spread may be reasonable, the proposed definition of "spread regulation" encompasses accelerating, constant, or decelerating spread.

View Article and Find Full Text PDF

Previous research suggests that local interactions and limited animal mobility can affect population dynamics. However, the spatial structure of the environment can further limit the mobility of animals. For example, an animal confined to a river valley or to a particular plant cannot move with equal ease in all directions.

View Article and Find Full Text PDF

The ecosystem engineering concept focuses on how organisms physically change the abiotic environment and how this feeds back to the biota. While the concept was formally introduced a little more than 10 years ago, the underpinning of the concept can be traced back to more than a century to the early work of Darwin. The formal application of the idea is yielding new insights into the role of species in ecosystems and many other areas of basic and applied ecology.

View Article and Find Full Text PDF

Ecosystem engineers affect other organisms by creating, modifying, maintaining or destroying habitats. Despite widespread recognition of these often important effects, the ecosystem engineering concept has yet to be widely used in ecological applications. Here, we present a conceptual framework that shows how consideration of ecosystem engineers can be used to assess the likelihood of restoration of a system to a desired state, the type of changes necessary for successful restoration and how restoration efforts can be most effectively partitioned between direct human intervention and natural ecosystem engineers.

View Article and Find Full Text PDF

We claim that diffusion-limited rates of reaction can be an explanation for the altered population dynamics predicted by models incorporating local interactions and limited individual mobility. We show that the predictions of a spatially explicit, individual-based model result from reduced rates of predation and reproduction caused by limited individual mobility and patchiness. When these reduced rates are used in a mean-field model, there is better agreement with the predictions of the simulation model incorporating local interactions.

View Article and Find Full Text PDF

The digestive tracts of 771 lesser snow geese (Chen caerulescens) collected from January to May 1983 from 12 locations (27 samples) were examined for helminth parasites to determine whether parasite species present in wintering geese or in spring migrants occurred independently of each other. Nine helminth species were identified. Seven had mean prevalences >5% and were the focus of this study.

View Article and Find Full Text PDF