Purpose: Rituximab with cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP) represents the standard of care for first-line treatment of diffuse large B-cell lymphoma (DLBCL). However, many patients are unable to tolerate R-CHOP and have inferior outcomes. This study aimed to develop a practical tool to help physicians identify patients with newly diagnosed DLBCL unlikely to tolerate a full course of R-CHOP.
View Article and Find Full Text PDFBackground: Systemic therapies for metastatic biliary tract cancers are few, and patients have a median overall survival of less than 1 year. MyPathway evaluates the activity of US Food and Drug Administration-approved therapies in non-indicated tumours with potentially actionable molecular alterations. In this study, we present an analysis of patients with metastatic biliary tract cancers with HER2 amplification, overexpression, or both treated with a dual anti-HER2 regimen, pertuzumab plus trastuzumab, from MyPathway.
View Article and Find Full Text PDFBackground: Systemic therapy options for salivary cancers are limited. MyPathway (NCT02091141), a phase IIa study, evaluates targeted therapies in non-indicated tumor types with actionable molecular alterations. Here, we present the efficacy and safety results for a subgroup of MyPathway patients with advanced salivary gland cancer (SGC) matched to targeted therapies based on tumor molecular characteristics.
View Article and Find Full Text PDFA wide variety of therapeutic agents may benefit by specifically directing them to the mitochondria in tumor cells. The current work aimed to design delivery systems that would enable a combination of tumor and mitochondrial targeting for such therapeutic entities. To this end, novel HPMA copolymer-based delivery systems that employ triphenylphosphonium (TPP) ions as mitochondriotropic agents were developed.
View Article and Find Full Text PDFNovel polymeric delivery systems for the photosensitizer mesochlorin e6 (Mce6) were synthesized to overcome problems of systemic toxicity. A disulfide bond was included to allow for quick release of Mce6 from the N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer backbone once internalized in tumor tissue. The synthesized conjugates demonstrated a time-dependent reductive cleavage with an accompanying increase in the quantum yield of singlet oxygen generation on exposure to DTT.
View Article and Find Full Text PDF