Sweat rate magnitude is a desired outcome for any wearable sensing patch dedicated to sweat analysis. Indeed, sweat rate values can be used two-fold: self-diagnosis of dehydration and correction/normalization of other physiological metrics, such as Borg scale, VO2, and different chemical species concentrations. Herein, a reliable sweat rate belt device for sweat rate monitoring was developed.
View Article and Find Full Text PDF3D printing technology has become attractive in the development of electrochemical sensors as it offers automation in fabrication, customization on-demand, and reproducibility, among other features. Nonetheless, to date, solid contact potentiometric ion sensors have remained overlooked using this technology. Thus, the novelty of this work relies on demonstrating for the first time the usefulness of the multimaterial 3D printing approach to manufacture potentiometric ion-selective electrodes.
View Article and Find Full Text PDFSkeletal muscle has gained recognition as an endocrine organ releasing myokines upon contraction during physical exercise. These myokines exert both local and pleiotropic health benefits, underscoring the crucial role of muscle function in countering obesity and contributing to the overall positive effects of exercise on health. Here, we found that exercise activates muscle p38γ, increasing locomotor activity through the secretion of interleukin-15 (IL-15).
View Article and Find Full Text PDFIn Alzheimer's disease (AD), transgenic mouse models have established links between abnormalities in the retina and those in the brain. is a murine, humanized AD model that replicates several pathological features observed in patients with AD. Research has focused on obtaining quantitative parameters from optical coherence tomography (OCT) in AD.
View Article and Find Full Text PDFAlzheimer's disease (AD) may manifest retinal changes preceding brain pathology. A transversal case-control study utilized spectral-domain OCT angiography (SD-OCTA) and Angio-Tool software 0.6a to assess retinal vascular structures and OCT for inner and outer retina thickness in the AD model at 6, 9, 12, 15, 17, and 20 months old.
View Article and Find Full Text PDFLactate is an important diagnostic and prognostic biomarker of several human pathological conditions, such as sepsis, malaria, and dengue fever. Unfortunately, due to the lack of reliable analytical decentralized platforms, the determination of lactate yet relies on discrete blood-based assays, which are invasive and inefficient and may cause tension and pain in the patient. Herein, we demonstrate the potential of a fully integrated microneedle (MN) sensing system for the minimally invasive transdermal detection of lactate in an interstitial fluid (ISF).
View Article and Find Full Text PDFThis study examined the anaerobic release of phosphorus (P) from two different Baltic Sea sediments (B and F), focusing on the impact of initial concentration of externally introduced waste-derived volatile fatty acids (VFA) as the carbon source, temperature, pH, and mixing conditions. The first batch bioreactor set was operated to demonstrate the effect of VFA on anaerobic P release at different concentrations (1000-10000 mg/L as COD) at 20 °C. A notable P release of up to 15.
View Article and Find Full Text PDFControlled release systems have gained considerable attention owing to their potential to deliver molecules, including ions and drugs, in a customized manner. We present a light-induced ion-transfer platform consisting of a dispersion of nanoparticles (NPs, ~300 nm) with the conductive polymer poly(3-octylthiophene-2,5-diyl) (POT) in the core and a potassium (K)-selective membrane in the shell. Owing to the photoactive nature of POT, POT NPs can be used for a dual purpose: as a host for positively charged species and as an actuator to trigger the subsequent release.
View Article and Find Full Text PDFDespite the distribution of relaxation time (DRT) method providing clear insights about processes that go unnoticed by traditional electrochemical impedance spectroscopy (EIS) analysis, it has not yet been adopted to solve electroanalytical systems. As an illustration case, we apply the DRT method to deconvolve EIS data from solid-state voltammetric ion-selective electrodes (ISEs). The main aim is to shed light on the underlying working mechanism across the different materials and interfaces, specifically, the doping of a conducting polymer when covered with a very thin (ca.
View Article and Find Full Text PDFCalibration-free sensors are generally understood as analytical tools with no need for calibration apart from the initial one (i.e., after its fabrication).
View Article and Find Full Text PDFMonitoring of carbon dioxide (CO) body levels is crucial under several clinical conditions (e.g., human intensive care and acid-base disorders).
View Article and Find Full Text PDFHerein, we investigate the selective deionization (i.e., the removal of ions) in thin-layer samples (<100 μm in thickness) using carbon nanotubes (CNTs) covered with an ionophore-based ion-selective membrane (ISM), resulting in a CNT-ISM tandem actuator.
View Article and Find Full Text PDFBackground: Cognitive dysfunction is a frequent stroke sequela, but its pathogenesis and treatment remain unresolved. Involvement of aberrant hippocampal neurogenesis and maladaptive circuitry remodeling has been proposed, but their mechanisms are unknown. Our aim was to evaluate potential underlying molecular/cellular events implicated.
View Article and Find Full Text PDFChronic cerebral hypoperfusion due to carotid artery stenosis is a major cause of vascular cognitive impairment and dementia (VCID). Bilateral carotid artery stenosis (BCAS) in rodents is a well-established model of VCID where most studies have focused on white matter pathology and subsequent cognitive deficit. Therefore, our aim was to study the implication of adult hippocampal neurogenesis in hypoperfusion-induced VCID in mice, and its relationship with cognitive hippocampal deficits.
View Article and Find Full Text PDFDissolved inorganic carbon (DIC) is a key component of the global carbon cycle and plays a critical role in ocean acidification and proliferation of phototrophs. Its quantification at a high spatial resolution is essential for understanding various biogeochemical processes. We present an analytical method for 2D chemical imaging of DIC by combining a conventional CO optode with localized electrochemical acidification from a polyaniline (PANI)-coated stainless-steel mesh electrode.
View Article and Find Full Text PDFThe chemical digitalization of sweat using wearable sensing interfaces is an attractive alternative to traditional blood-based protocols in sports. Although sweat lactate has been claimed to be a relevant biomarker in sports, an analytically validated wearable system to prove that has not yet been developed. We present a fully integrated sweat lactate sensing system applicable to in situ perspiration analysis.
View Article and Find Full Text PDFGrowing evidence supports the suggestion that the peripheral immune system plays a role in different pathologies associated with cognitive impairment, such as vascular dementia (VD) or Alzheimer's disease (AD). The aim of this review is to summarize, within the peripheral immune system, the implications of different types of myeloid cells in AD and VD, with a special focus on post-stroke cognitive impairment and dementia (PSCID). We will review the contributions of the myeloid lineage, from peripheral cells (neutrophils, platelets, monocytes and monocyte-derived macrophages) to central nervous system (CNS)-associated cells (perivascular macrophages and microglia).
View Article and Find Full Text PDFWe present a methodology for the detection of dissolved inorganic phosphorous (DIP) in seawater using an electrochemically driven actuator-sensor system. The motivation for this work stems from the lack of tangible solutions for the in situ monitoring of nutrients in water systems. It does not require the addition of any reagents to the sample and works under mild polarization conditions, with the sample confined to a thin-layer compartment.
View Article and Find Full Text PDFMicroneedle sensor technology offers exciting opportunities for decentralized clinical analyses. A novel issue puts forward herein is to demonstrate the uniqueness of membrane-based microneedles to accomplish real-time, on-body monitoring of multiple ions simultaneously. The use of multi-ion detection is clinically relevant since it is expected to provide a more complete and reliable assessment of the clinical status of a subject concerning electrolyte disorders and others.
View Article and Find Full Text PDFBackground: The EARLYSTIM trial demonstrated for Parkinson's disease patients with early motor complications that deep brain stimulation of the subthalamic nucleus (STN-DBS) and best medical treatment (BMT) was superior to BMT alone.
Objective: This prospective, ancillary study on EARLYSTIM compared changes in blinded speech intelligibility assessment between STN-DBS and BMT over 2 years, and secondary outcomes included non-speech oral movements (maximum phonation time [MPT], oral diadochokinesis), physician- and patient-reported assessments.
Methods: STN-DBS (n = 102) and BMT (n = 99) groups underwent assessments on/off medication at baseline and 24 months (in four conditions: on/off medication, ON/OFF stimulation-for STN-DBS).
Neuronal connectivity and activity-dependent synaptic plasticity are fundamental properties that support brain function and cognitive performance. Phosphatidylinositol 3-kinase (PI3K) intracellular signaling controls multiple mechanisms mediating neuronal growth, synaptic structure, and plasticity. However, it is still unclear how these pleiotropic functions are integrated at molecular and cellular levels.
View Article and Find Full Text PDF