Publications by authors named "Csiszar K"

Just World Beliefs (JWBs) are a psychological tendency to conclude the world is an inherently fair place in which people experience the outcomes they deserve. Strong JWBs positively correlate with a personal commitment to long-term ambitions and blaming people for their negative health outcomes. This study aimed to measure JWBs in medical students and the general population of Hawai'i.

View Article and Find Full Text PDF

Objectives: This study aimed to evaluate whether belief in a just world is associated with community-level abortion stigma.

Study Design: From December 2020 to June 2021, we conducted a national U.S.

View Article and Find Full Text PDF

Cu-dependent lysyl oxidase (LOX) plays a catalytic activity-related, primary role in the assembly of the extracellular matrix (ECM), a dynamic structural and regulatory framework which is essential for cell fate, differentiation and communication during development, tissue maintenance and repair. LOX, additionally, plays both activity-dependent and independent extracellular, intracellular and nuclear roles that fulfill significant functions in normal tissues, and contribute to vascular, cardiac, pulmonary, dermal, placenta, diaphragm, kidney and pelvic floor disorders. LOX activities have also been recognized in glioblastoma, diabetic neovascularization, osteogenic differentiation, bone matrix formation, ligament remodeling, polycystic ovary syndrome, fetal membrane rupture and tumor progression and metastasis.

View Article and Find Full Text PDF

In Hawaiian traditional medicinal practices, the indigenous 'uhaloa, Waltheria indica var. Americana is one of the most recognized plants. Waltheria is also known in various cultures as a medicinal plant for the treatment of inflammatory conditions.

View Article and Find Full Text PDF

Congenital muscular dystrophy (CMD), a subgroup of myopathies is a genetically and clinically heterogeneous group of inherited muscle disorders and is characterized by progressive muscle weakness, fiber size variability, fibrosis, clustered necrotic fibers, and central myonuclei present in regenerating muscle. Type IV collagen () mutations have recently been identified in patients with intracerebral, vascular, renal, ophthalmologic pathologies and congenital muscular dystrophy, consistent with diagnoses of Walker-Warburg Syndrome or Muscle-Eye-Brain disease. Morphological characteristics of muscular dystrophy have also been demonstrated mutant mice.

View Article and Find Full Text PDF

. Human type IV collagenopathy is associated with mutations within the and to a less extent the genes. The proteins encoded by these genes form heterotrimers and are the highest molar ratio components of the ubiquitous basement membrane.

View Article and Find Full Text PDF

Basement membranes (BMs) are highly specialized extracellular matrices (ECMs) that provide support and polarization cues for epithelial cells. Proper adhesion to the BM is pivotal in epithelial cell function and survival. Type IV collagens are the predominant components of all types of BMs, that form an irregular, polygonal lattice and serve as a scaffold for numerous other BM components and BM-associated cells.

View Article and Find Full Text PDF

The basal lamina (BM) contains numerous components with a predominance of type IV collagens. Clinical manifestations associated with mutations of the human COL4A1 gene include perinatal cerebral hemorrhage and porencephaly, hereditary angiopathy, nephropathy, aneurysms and muscle cramps (HANAC), ocular dysgenesis, myopathy, Walker–Warburg syndrome and systemic tissue degeneration. In Drosophila, the phenotype associated with dominant temperature sensitive mutations of col4a1 include severe myopathy resulting from massive degradation of striated muscle fibers, and in the gut, degeneration of circular visceral muscle cells and epithelial cells following detachment from the BM.

View Article and Find Full Text PDF

Lysyl oxidase-like 2 (LOXL2) is involved in a wide range of physiological and pathological processes, including fibrosis and tumor progression, implicating intracellular and extracellular functions. To explore the specific in vivo role of LOXL2 in physiological and tumor contexts, we generated conditional gain- and loss-of-function mouse models. Germ-line deletion of Loxl2 promotes lethality in half of newborn mice mainly associated to congenital heart defects, while Loxl2 overexpression triggers male sterility due to epididymal dysfunction caused by epithelial disorganization, fibrosis and acute inflammation.

View Article and Find Full Text PDF

Results of the present study support ocular epithelia-specific LOXL1 functions in exfoliation glaucoma that may include both dysregulated extracellular matrix cross-linking activity and cellular mechanisms involving a role for LOXL1, in direct interaction with Snail1, in promoting epithelial to mesenchymal transition and a potential shift towards fibrogenic epithelial cell phenotypes.

View Article and Find Full Text PDF

Epithelial-mesenchymal transition (EMT) has been associated with increased aggressiveness and acquisition of migratory properties providing tumor cells with the ability to invade into adjacent tissues. Downregulation of E-cadherin, a hallmark of EMT, is mediated by several transcription factors (EMT-TFs) that act also as EMT inducers, among them, Snail1 and the bHLH transcription factor E47. We previously described lysyl oxidase-like 2 (LOXL2), a member of the lysyl oxidase family, as a Snail1 regulator and EMT inducer.

View Article and Find Full Text PDF

Human placental development is characterized by invasion of extravillous cytotrophoblasts (EVCTs) into the uterine wall during the first trimester of pregnancy. Peroxisome proliferator-activated receptor γ (PPARγ) plays a major role in placental development, and activation of PPARγ by its agonists results in inhibition of EVCT invasion in vitro. To identify PPARγ target genes, microarray analysis was performed using GeneChip technology on EVCT primary cultures obtained from first-trimester human placentas.

View Article and Find Full Text PDF

Language disorders cover a wide range of conditions with heterologous and overlapping phenotypes and complex etiologies harboring both genetic and environmental influences. Genetic approaches including the identification of genes linked to speech and language phenotypes and the characterization of normal and aberrant functions of these genes have, in recent years, unraveled complex details of molecular and cognitive mechanisms and provided valuable insight into the biological foundations of language. Consistent with this approach, we have reviewed the functional aspects of allelic variants of genes which are currently known to be either causally associated with disorders of speech and language or impact upon the spectrum of normal language ability.

View Article and Find Full Text PDF

Abdominal aortic aneurysms (AAAs) are a major cause of morbidity and mortality in the United States today. We employed a model for AAA development using apolipoprotein E knock out mice fed a high-fat diet and treated with ANG II and β-aminopropionitrile (β-APN) for 4 wk. ANG II induces hypertension and atherosclerotic disease, whereas β-APN inhibits the activity of the lysyl oxidase/ lysyl oxidase-like protein (LOX/LOXL) family members.

View Article and Find Full Text PDF

Recent data from clinical and mammalian genetic studies indicate that COL4A1 mutations manifest with basement membrane defects that result in muscle weakness, cramps, contractures, dystrophy and atrophy. In-depth studies of mutant COL4A1-associated muscle phenotype, however, are lacking and significant details of the muscle-specific pathomechanisms remain unknown. In this study, we have used a comprehensive set of Drosophila col4a1 and col4a2 mutants and a series of genetic and mutational analyses, gene, protein expression, and immunohistochemistry experiments in order to establish a Drosophila model and address some of these questions.

View Article and Find Full Text PDF

Discovery of mechanisms that impede the aggressive and metastatic phenotype of human basal triple-negative-type breast cancers (BTNBCs) could provide novel targets for therapy for this form of breast cancer that has a relatively poor prognosis. Previous studies have demonstrated that expression of GATA3, the master transcriptional regulator of mammary luminal differentiation, can reduce the tumorigenicity and metastatic propensity of the human BTNBC MDA-MB-231 cell line (MB231), although the mechanism for reduced metastases was not elucidated. We demonstrate through gene expression profiling that GATA3 expression in 231 cells resulted in the dramatic reduction in the expression of lysyl oxidase (LOX), a metastasis-promoting, matrix-remodeling protein, in part, through methylation of the LOX promoter.

View Article and Find Full Text PDF

Basal-like breast carcinoma is characterized by the expression of basal/myoepithelial markers, undifferentiated phenotype, highly aggressive behaviour and frequent triple negative status (ESR-, PR-, Her2neu-). We have previously shown that epithelial-mesenchymal transition (EMT) occurs in basal-like breast tumours and identified Lysyl-oxidase-like 2 (LOXL2) as an EMT player and poor prognosis marker in squamous cell carcinomas. We now show that LOXL2 mRNA is overexpressed in basal-like human breast carcinomas.

View Article and Find Full Text PDF

Clinical evaluation of a young woman with subcutaneous fibrotic nodules, progressive distal joint contractures and marfanoid stature revealed a previously unrecognized fibrotic disorder characterized by several unique phenotypic features and some features overlapping with known disorders. Mutational analysis of the FBN1 and FBN2 genes excluded Marfan syndrome and congenital contractural arachnodactyly. MMP2 gene sequence analysis excluded multicentric osteolysis, nodulosis and arthropathy.

View Article and Find Full Text PDF

Tumors are characterized by extracellular matrix (ECM) remodeling and stiffening. The importance of ECM remodeling to cancer is appreciated; the relevance of stiffening is less clear. We found that breast tumorigenesis is accompanied by collagen crosslinking, ECM stiffening, and increased focal adhesions.

View Article and Find Full Text PDF

A growing number of studies indicate the importance of the lysyl oxidase family in the promotion of epithelial neoplasms towards their more aggressive forms. However, the role of individual family members in carcinoma progression has yet to be ascertained. In this study, we analyzed LOXL2 expression in malignantly transformed MCF-7 and normal MCF-10A mammary epithelial cell line clones stably transduced with LOXL2 in vitro, and in normal and cancerous breast tissue samples in vivo.

View Article and Find Full Text PDF

We have recently reported a mutation within the conserved immunoglobulin V-type domain of the predicted adhesion protein Mpzl3 (MIM 611707) in rough coat (rc) mice with severe skin abnormalities and progressive cyclic hair loss. In this study, we tested the hypothesis that the human orthologue MPZL3 on chromosome 11q23.3 is a candidate for similar symptoms in humans.

View Article and Find Full Text PDF

Lysyl oxidases are a family of five copper-dependent amine oxidases including LOX, LOXL, LOXL2, LOXL3 and LOXL4. LOX and LOXL are essential for the assembly and maintenance of extracellular matrixes. LOXL2, LOXL3 and LOXL4, secreted and active enzymes, were also noted in association with diverse tumor types.

View Article and Find Full Text PDF

Lysyl oxidase (LOX), an amine oxidase critical for the initiation of collagen and elastin cross-linking, has recently been shown to regulate cellular activities possibly by modulating the functions of growth factors. In this study, we investigated the interaction between LOX and transforming growth factor-beta1 (TGF-beta1), a potent growth factor abundant in bone, the effect of LOX on TGF-beta1 signaling, and its potential mechanism. The specific binding between mature LOX and mature TGF-beta1 was demonstrated by immunoprecipitation and glutathione S-transferase pulldown assay in vitro.

View Article and Find Full Text PDF

Selective up-regulation of the mRNA of LOXL4, a member of the LOX matrix amine oxidase family, significantly correlated with lymph node metastases and higher tumour stages in head and neck squamous cell carcinomas (HNSCC). To evaluate the diagnostic and prognostic value of the protein we produced an antibody specific for LOXL4 and assessed the expression in 317 human HNSCC specimens. The LOXL4 protein was detected in 92.

View Article and Find Full Text PDF