Publications by authors named "Csilla Torday"

Objective: Gastrointestinal methane generation has been demonstrated in various stress conditions, but it is not known whether nonasphyxiating amounts have any impact on the mammalian pathophysiology. We set out to characterize the effects of exogenous methane administration on the process of inflammatory events arising after reoxygenation in a large animal model of ischemia-reperfusion.

Design: A randomized, controlled in vivo animal study.

View Article and Find Full Text PDF

We have shown that phosphatidylcholine (PC) metabolites may have a function in counteracting the production of reactive oxygen species (ROS), and that this mechanism can lead to the generation of methane from choline. The aims were to establish whether the dietary administration of PC can protect the reperfused small bowel mucosa by its acting as an anti-inflammatory agent and to investigate this possibility in association with in vivo methane generation. Group 1 (n = 5) of anesthetized dogs served as sham-operated controls, whereas in groups 2 (n = 6) and 3 (n = 6), complete small intestinal ischemia was induced by occluding the superior mesenteric artery for 60 min.

View Article and Find Full Text PDF

Background/aims: Electrophilic methyl groups bound to positively charged nitrogen moieties may act as electron acceptors, and this mechanism could lead to the generation of methane from choline. The aims were to characterize the methanogenic potential of phosphatidylcholine metabolites, and to define the in vivo relevance of this pathway in hypoxia-induced cellular responses.

Methods: The postulated reaction was investigated (1) in model chemical experiments, (2) in rat mitochondrial subfractions and (3) in bovine endothelial cell cultures under hypoxic conditions and in the presence of hydroxyl radical generation.

View Article and Find Full Text PDF

Indirect evidence suggests that an abnormal increase in reducing power (reductive stress) may be associated with abnormal clinical states. We have recently proposed that under such conditions biomolecules with electrophilic methyl groups (EMGs) bound to positively charged nitrogen or sulfur moieties may act as electron acceptors and that this poising mechanism may entail the generation of methane gas. Here we report for the first time the generation of methane by rat liver mitochondria.

View Article and Find Full Text PDF