Sleep cycles are defined as episodes of non-rapid eye movement (non-REM) sleep followed by an episode of REM sleep. Fractal or aperiodic neural activity is a well-established marker of arousal and sleep stages measured using electroencephalography. We introduce a new concept of 'fractal cycles' of sleep, defined as a time interval during which time series of fractal activity descend to their local minimum and ascend to the next local maximum.
View Article and Find Full Text PDFHomeostatic, circadian and ultradian mechanisms play crucial roles in the regulation of sleep. Evidence suggests that ratios of low-to-high frequency power in the electroencephalogram (EEG) spectrum indicate the instantaneous level of sleep pressure, influenced by factors such as individual sleep-wake history, current sleep stage, age-related differences and brain topography characteristics. These effects are well captured and reflected in the spectral exponent, a composite measure of the constant low-to-high frequency ratio in the periodogram, which is scale-free and exhibits lower interindividual variability compared to slow wave activity, potentially serving as a suitable standardization and reference measure.
View Article and Find Full Text PDFThe timing of daily activity in humans have been associated with various demographic and health-related factors, but the possibly complex patterns of confounding and interaction between these has not been systematically explored. We use data from Hungarostudy 2021, a nationally representative survey of 7000 Hungarian adults to assess the relationship between self-reported chronotype, social jetlag (using the Munich Chronotype Questionnaire), demographic variables and self-reported health and demographic variables, including ethnic minority membership. Supporting the validity of self-reports, participants with later chronotypes reported the lowest daytime sleepiness at a later clock time.
View Article and Find Full Text PDFUnfolding the overnight dynamics in human sleep features plays a pivotal role in understanding sleep regulation. Studies revealed the complex reorganization of the frequency composition of sleep electroencephalogram (EEG) during the course of sleep, however the scale-free and the oscillatory measures remained undistinguished and improperly characterized before. By focusing on the first four non-rapid eye movement (NREM) periods of night sleep records of 251 healthy human subjects (4-69 years), here we reveal the flattening of spectral slopes and decrease in several measures of the spectral intercepts during consecutive sleep cycles.
View Article and Find Full Text PDFHomeostatic and circadian processes play a pivotal role in determining sleep structure, timing, and quality. In sharp contrast with the wide accessibility of the electroencephalogram (EEG) index of sleep homeostasis, an electrophysiological measure of the circadian modulation of sleep is still unavailable. Evidence suggests that sleep-spindle frequencies decelerate during biological night.
View Article and Find Full Text PDF