Organofluorine compounds have had an increasing impact in synthetic organic chemistry and pharmaceutical research over the past two decades. Their syntheses and the development of novel synthetic approaches towards versatile fluorinated small molecules have received great interest. Our research team has designed various selective and stereocontrolled methods for the construction of fluorine-containing small molecular entities, involving the transformation of various functionalized cycloalkenes across their ring olefin bond.
View Article and Find Full Text PDFNanostructured but micro-sized biocatalysts were created by bottom-up technology using multi-functionalized silica nanoparticles (NPs) as nano-sized building blocks to form cross-linked enzyme-adhered nanoparticles (CLEANs) as robust micro-sized particles with beneficial internal structure and good mechanical properties. Systematic surface modification of NPs with a grafting mixture consisting of organosilanes with reactive (aminopropyl) and inert (e. g.
View Article and Find Full Text PDFPhenylalanine ammonia-lyases (PALs) catalyse the non-oxidative deamination of l-phenylalanine to -cinnamic acid, while in the presence of high ammonia concentration, the synthetically attractive reverse reaction occurs. Although they have been intensively studied, the wider application of PALs for the large scale synthesis of non-natural amino acids is still rather limited, mainly due to the decreased operational stability of PALs under the high ammonia concentration conditions of ammonia addition. Herein, we describe the development of a highly stable and active immobilized PAL-biocatalyst obtained through site-specific covalent immobilization onto single-walled carbon nanotubes (SWCNTs), employing maleimide/thiol coupling of engineered enzymes containing surficial Cys residues.
View Article and Find Full Text PDFOscillation and collective behavior of diffusion flames is a fascinating phenomena. Considering candle bundles with different sizes in variable oxygen concentration, the flickering dynamics of the flames are experimentally and theoretically investigated. Trends for the flickering frequency as a function of the candle number in the bundle and oxygen concentration is revealed for various topologies of the candles packing.
View Article and Find Full Text PDFThe dual functionalization of magnetic nanoparticles with inert (methyl) and reactive (aminopropyl) groups enables efficient immobilization of synthetic metalloporphyrins (such as 5,10,15,20-tetrakis(2,3,4,5,6-pentafluorophenyl)iron(II) porphyrin and 5,10,15,20-tetrakis-(4-sulfonatophenyl)iron(II) porphyrin) via covalent or ionic interactions. The proportion of reactive function on the surface has significant effect on the biomimetic activity of metalloporphyrins. The optimized magnetic nanocatalyst containing porphyrin was successfully applied for biomimetic oxidation of antihypertensive drug Amlodipine in batch and continuous-flow reactors as well.
View Article and Find Full Text PDFPhenylalanine ammonia-lyases (PALs) catalyse the non-oxidative deamination of L-phenylalanine to trans-cinnamic acid, while in the presence of high ammonia concentration the reverse reaction occurs. PALs have been intensively studied, however, their industrial applications for amino acids synthesis remained limited, mainly due to their decreased operational stability or limited substrate specificity. The application of extensive directed evolution procedures to improve their stability, activity or selectivity, is hindered by the lack of reliable activity assays allowing facile screening of PAL-activity within large-sized mutant libraries.
View Article and Find Full Text PDFThe Amano lipase from (L-AK) was covalently immobilized on various carbon nanomaterials (functionalized single-walled carbon nanotubes and graphene oxide) and tested for biodiesel production. Using the most active lipase preparation (covalently immobilized L-AK on SwCNT derivatized with glycerol diglycidyl ether) under optimal conditions, quasi-complete conversion (>99%) of sunflower oil was obtained after only 4 h reaction time. Moreover, the biocatalyst maintained more than 99% of its initial activity in the batch system after multiple recycling experiments.
View Article and Find Full Text PDFLipase B from immobilized by covalent binding on sebacoyl-activated chitosan-coated magnetic nanoparticles proved to be an efficient biocatalyst (49.2-50% conversion in 3-16 h and >96% enantiomeric excess) for the enzymatic kinetic resolution of some racemic heteroarylethanols through transesterification with vinyl acetate. Under optimal conditions (vinyl acetate, -hexane, 45 °C), the biocatalyst remains active after 10 cycles.
View Article and Find Full Text PDFThe biocatalytic synthesis of L- and D-phenylalanine analogues of high synthetic value have been developed using as biocatalysts mutant variants of phenylalanine ammonia lyase from Petroselinum crispum (PcPAL), specifically tailored towards mono-substituted phenylalanine and cinnamic acid substrates. The catalytic performance of the engineered PcPAL variants was optimized within the ammonia elimination and ammonia addition reactions, focusing on the effect of substrate concentration, biocatalyst:substrate ratio, reaction buffer and reaction time, on the conversion and enantiomeric excess values. The optimal conditions provided an efficient preparative scale biocatalytic procedure of valuable phenylalanines, such as (S)-m-methoxyphenylalanine (Y = 40%, ee > 99%), (S)-p-bromophenylalanine (Y = 82%, ee > 99%), (S)-m-(trifluoromethyl)phenylalanine (Y = 26%, ee > 99%), (R)-p-methylphenylalanine, (Y = 49%, ee = 95%) and (R)-m-(trifluoromethyl)phenylalanine (Y = 34%, ee = 93%).
View Article and Find Full Text PDFThis article overviews the numerous immobilization methods available for various biocatalysts such as whole-cells, cell fragments, lysates or enzymes which do not require preliminary enzyme purification and introduces an advanced approach avoiding the costly and time consuming downstream processes required by immobilization of purified enzyme-based biocatalysts (such as enzyme purification by chromatographic methods and dialysis). Our approach is based on silica shell coated magnetic nanoparticles as solid carriers decorated with mixed functions having either coordinative binding ability (a metal ion complexed by a chelator anchored to the surface) or covalent bond-forming ability (an epoxide attached to the surface via a proper linker) enabling a single operation enrichment and immobilization of a recombinant phenylalanine ammonia-lyase from parsley fused to a polyhistidine affinity tag.
View Article and Find Full Text PDFBiomimetic oxidation of drugs catalyzed by metalloporphyrins can be a novel and promising way for the effective and sustainable synthesis of drug metabolites. The immobilization of 5,10,15,20-tetrakis(2,3,4,5,6-pentafluorophenyl)iron(II) porphyrin (FeTPFP) and 5,10,15,20-tetrakis-(4-sulfonatophenyl)iron(II) porphyrin (FeTSPP) via stable covalent or rapid ionic binding on aminopropyl-functionalized magnetic nanoparticles (MNPs-NH) were developed. These immobilized catalysts could be efficiently applied for the synthesis of new pharmaceutically active derivatives and liver related phase I oxidative major metabolite of an antiarrhythmic drug, amiodarone integrated in a continuous-flow magnetic chip reactor (Magnechip).
View Article and Find Full Text PDFFerulic acid decarboxylase from Saccharomyces cerevisiae (ScFDC1) was described to possess a novel, prenylated flavin mononucleotide cofactor (prFMN) providing the first enzymatic 1,3-dipolar cycloaddition mechanism. The high tolerance of the enzyme towards several non-natural substrates, combined with its high quality, atomic resolution structure nominates FDC1 an ideal candidate as flexible biocatalyst for decarboxylation reactions leading to synthetically valuable styrenes. Herein the substrate scope of ScFDC1 is explored on substituted cinnamic acids bearing different functional groups (-OCH, -CF or -Br) at all positions of the phenyl ring (o-, m-, p-) as well as on several biaryl and heteroaryl cinnamic acid analogues or derivatives with extended alkyl chain.
View Article and Find Full Text PDFIn this study, lipase-mediated dynamic kinetic resolution (DKR) of various benzylic amines (1a-g) is presented which is realized in a so far unprecedented fully continuous-flow system. The DKR process applying sol-gel immobilized lipase B from Candida antarctica as biocatalyst, palladium on 3-aminopropyl-functionalized silica as racemization catalyst, isopropyl 2-ethoxyacetate as acylating agent, ammonium formate as hydrogen and nitrogen sources, and 2-methyl-2-butanol as solvent under regulated pressure provided the desired products in moderate to good yields with excellent enantiomeric excesses.
View Article and Find Full Text PDFTailored mutants of phenylalanine ammonia-lyase from (PAL) were created and tested in ammonia elimination from various sterically demanding, non-natural analogues of phenylalanine and in ammonia addition reactions into the corresponding ()-arylacrylates. The wild-type PAL was inert or exhibited quite poor conversions in both reactions with all members of the substrate panel. Appropriate single mutations of residue F137 and the highly conserved residue I460 resulted in PAL variants that were active in ammonia elimination but still had a poor activity in ammonia addition onto bulky substrates.
View Article and Find Full Text PDFAn improved sol-gel process involving the use of hollow silica microspheres as a supporting additive was applied for the co-immobilization of whole cells of Escherichia coli with Chromobacterium violaceum ω-transaminase activity and Lodderomyces elongisporus with ketoreductase activity. The co-immobilized cells with two different biocatalytic activities could perform a cascade of reactions to convert racemic 4-phenylbutan-2-amine or heptan-2-amine into a nearly equimolar mixture of the corresponding enantiomerically pure R amine and S alcohol even in continuous-flow mode. The novel co-immobilized whole-cell system proved to be an easy-to-store and durable biocatalyst.
View Article and Find Full Text PDFA number of class I lyase-like enzymes, including aromatic ammonia-lyases and aromatic 2,3-aminomutases, contain the electrophilic 3,5-dihydro-5-methylidene-4H-imidazol-4-one (MIO) catalytic moiety. This study reveals that Pseudomonas fluorescens R124 strain isolated from a nutrient-limited cave encodes a histidine ammonia-lyase, a tyrosine/phenylalanine/histidine ammonia-lyase (XAL), and a phenylalanine 2,3-aminomutase (PAM), and demonstrates that an organism under nitrogen-limited conditions can develop novel nitrogen fixation and transformation pathways to enrich the possibility of nitrogen metabolism by gaining a PAM through horizontal gene transfer. The novel MIO enzymes are potential biocatalysts in the synthesis of enantiopure unnatural amino acids.
View Article and Find Full Text PDFAromatic amino acid ammonia-lyases and aromatic amino acid 2,3-aminomutases contain the post-translationally formed prosthetic 3,5-dihydro-4-methylidene-5-imidazol-5-one (MIO) group. MIO enzymes catalyze the stereoselective synthesis of α- or β-amino acid enantiomers, making these chemical processes environmentally friendly and affordable. Characterization of novel inhibitors enables structural understanding of enzyme mechanism and recognizes promising herbicide candidates as well.
View Article and Find Full Text PDFThis study focuses on the expansion of the substrate scope of phenylalanine ammonia-lyase from Petroselinum crispum (PcPAL) towards the l-enantiomers of racemic styrylalanines rac-1a-d - which are less studied and synthetically challenging unnatural amino acids - by reshaping the aromatic binding pocket of the active site of PcPAL by point mutations. Ammonia elimination from l-styrylalanine (l-1a) catalyzed by non-mutated PcPAL (wt-PcPAL) took place with a 777-fold lower k/K value than the deamination of the natural substrate, l-Phe. Computer modeling of the reactions catalyzed by wt-PcPAL indicated an unproductive and two major catalytically active conformations and detrimental interactions between the aromatic moiety of l-styrylalanine, l-1a, and the phenyl ring of the residue F137 in the aromatic binding region of the active site.
View Article and Find Full Text PDFCarboxylated single-walled carbon nanotubes (SwCNT) were used as a support for the covalent immobilization of phenylalanine ammonia-lyase (PAL) from parsley by two different methods. The nanostructured biocatalysts (SwCNT-PAL and SwCNT-PAL) with low diffusional limitation were tested in the batch-mode kinetic resolution of racemic 2-amino-3-(thiophen-2-yl)propanoic acid () to yield a mixture of ()- and ()-3-(thiophen-2-yl)acrylic acid () and in ammonia addition to to yield enantiopure ()-. SwCNT-PAL was a stable biocatalyst (>90 % of the original activity remained after six cycles with and after three cycles in 6 m NH with ).
View Article and Find Full Text PDFIn this paper we describe the chemoenzymatic synthesis of enantiopure l-2-arylthiazol-4-yl alanines starting from their racemic N-acetyl derivatives; by combining the lipase-catalysed dynamic kinetic resolution of oxazol-5(4H)-ones with a chemical and an enzymatic enantioselective hydrolytic step affording the desired products in good yields (74%-78%) and high enantiopurities (ee > 99%). The developed procedure exploits the utility of the single-walled carbon nanotubes-bound diethylaminoethanol as mild and efficient racemisation agent for the dynamic kinetic resolution of the corresponding oxazolones.
View Article and Find Full Text PDFCarboxylated single-walled carbon nanotubes (SWCNTCOOH) were used as support for covalent immobilization of Candida antarctica lipase B (CaL-B) using linkers with different lengths. The obtained nanostructured biocatalysts with low diffusional limitation were tested in batch mode in the ethanolysis of the sunflower oil. SWCNTCOOH-CaL-B proved to be a highly efficient and stable biocatalyst in acetonitrile (83.
View Article and Find Full Text PDFPhenylalanine ammonia-lyase (PAL), found in many organisms, catalyzes the deamination of l-phenylalanine (Phe) to (E)-cinnamate by the aid of its MIO prosthetic group. By using PAL immobilized on magnetic nanoparticles and fixed in a microfluidic reactor with an in-line UV detector, we demonstrated that PAL can catalyze ammonia elimination from the acyclic propargylglycine (PG) to yield (E)-pent-2-ene-4-ynoate. This highlights new opportunities to extend MIO enzymes towards acyclic substrates.
View Article and Find Full Text PDFThis paper describes the biocatalytic synthesis of new Mannich bases containing various heterocyclic rings (thiazole, furane, thiophene, pyridine) by applying the lipase catalyzed trimolecular condensation of the corresponding heterocyclic aldehydes with acetone and primary aromatic amines, in mild and eco-friendly reaction conditions. The obtained Mannich bases were acylated to their corresponding N-acetyl derivatives. All compounds were characterized by 1H-NMR, 13C-NMR and MS spectrometry.
View Article and Find Full Text PDFAmmonia-lyases catalyze a wide range of processes leading to α,β-unsaturated compounds by elimination of ammonia. In this chapter, ammonia-lyases are reviewed with major emphasis on their synthetic applications in stereoselective preparation of unnatural amino acids. Besides the synthesis of various unnatural α-amino acids with the aid of phenylalanine ammonia-lyases (PALs) utilizing the 3,5-dihydro-5-methylidene-4H-imidazol-4-one (MIO) prosthetic groups, the biotransformations leading to various unnatural β-amino acids with phenylalanine 2,3-aminomutases using the same catalytic MIO prosthetic group are discussed.
View Article and Find Full Text PDF