Publications by authors named "Crystal Woods"

Phosphatase and tensin homolog (Pten) is a key regulator of cell proliferation and a potential target to stimulate postnatal enteric neuro- and/or gliogenesis. To investigate this, we generated two tamoxifen-inducible Cre recombinase murine models in which was conditionally ablated, (1) in glia (-expressing cells) and (2) in neurons (-expressing cells). Tamoxifen-treated adult (7-12 weeks of age; = 4-15) mice were given DSS to induce colitis, EdU to monitor cell proliferation, and were evaluated at two timepoints: (1) early (3-4 days post-DSS) and (2) late (3-4 weeks post-DSS).

View Article and Find Full Text PDF

Proteolipid protein 1 (Plp1) is highly expressed in enteric glia, labeling cells throughout the mucosa, muscularis, and the extrinsic innervation. Plp1 is a major constituent of myelin in the central and peripheral nervous systems, but the absence of myelin in the enteric nervous system (ENS) suggests another role for Plp1 in the gut. Although the functions of enteric glia are still being established, there is strong evidence that they regulate intestinal motility and permeability.

View Article and Find Full Text PDF

Background: The intestinal microbiota plays an important role in regulating gastrointestinal (GI) physiology in part through interactions with the enteric nervous system (ENS). Alterations in the gut microbiome frequently occur together with disturbances in enteric neural control in pathophysiological conditions. However, the mechanisms by which the microbiota regulates GI function and the structure of the ENS are incompletely understood.

View Article and Find Full Text PDF

Background: In mice, Schwann cell (SC) progenitors give rise to autonomic ganglion cells and migrate into the gut to become enteric neurons. It is unknown whether SC progenitors have a similar fate in humans. In search of evidence for human SC-derived neurogenesis in the gastrointestinal (GI) tract, we studied the rectums from cadaveric controls and children with anorectal malformations (ARM).

View Article and Find Full Text PDF

In infants intolerant of enteral feeding because of intestinal disease, parenteral nutrition may be associated with cholestasis, which can progress to end-stage liver disease. Here we show the function of hepatic macrophages and phytosterols in parenteral nutrition-associated cholestasis (PNAC) pathogenesis using a mouse model that recapitulates the human pathophysiology and combines intestinal injury with parenteral nutrition. We combine genetic, molecular, and pharmacological approaches to identify an essential function of hepatic macrophages and IL-1β in PNAC.

View Article and Find Full Text PDF

Epigenetic mechanisms, including DNA methylation and histone acetylation, regulate gene expression in idiopathic pulmonary arterial hypertension (IPAH). These mechanisms can modulate expression of extracellular superoxide dismutase (SOD3 or EC-SOD), a key vascular antioxidant enzyme, and loss of vascular SOD3 worsens outcomes in animal models of pulmonary arterial hypertension. We hypothesized that SOD3 gene expression is decreased in patients with IPAH due to aberrant DNA methylation and/or histone deacetylation.

View Article and Find Full Text PDF

Background: Pulmonary hypertension (PH) worsens clinical outcomes in former preterm infants with bronchopulmonary dysplasia (BPD). Oxidant stress disrupts alveolar and vascular development in models of BPD. Bleomycin causes oxidative stress and induces BPD and PAH in neonatal rats.

View Article and Find Full Text PDF

Excess superoxide has been implicated in pulmonary hypertension (PH). We previously found lung overexpression of the antioxidant extracellular superoxide dismutase (EC-SOD) attenuates PH and pulmonary artery (PA) remodeling. Although comprising a small fraction of total SOD activity in most tissues, EC-SOD is abundant in arteries.

View Article and Find Full Text PDF

Aims: Pulmonary hypertension (PH) is characterized by an oxidant/antioxidant imbalance that promotes abnormal vascular responses. Reactive oxygen species, such as superoxide (O(2)(•-)), contribute to the pathogenesis of PH and vascular responses, including vascular remodeling and inflammation. This study sought to investigate the protective role of a pharmacological catalytic antioxidant, a superoxide dismutase (SOD) mimetic (MnTE-2-PyP), in hypoxia-induced PH, vascular remodeling, and NALP3 (NACHT, LRR, and PYD domain-containing protein 3)-mediated inflammation.

View Article and Find Full Text PDF

Morphogenesis of the vertebrate head relies on proper dorsal-ventral (D-V) patterning of neural crest cells (NCC) within the pharyngeal arches. Endothelin-1 (Edn1)-induced signaling through the endothelin-A receptor (Ednra) is crucial for cranial NCC patterning within the mandibular portion of the first pharyngeal arch, from which the lower jaw arises. Deletion of Edn1, Ednra or endothelin-converting enzyme in mice causes perinatal lethality due to severe craniofacial birth defects.

View Article and Find Full Text PDF

Lower jaw development is a complex process in which multiple signaling cascades establish a proximal-distal organization. These cascades are regulated both spatially and temporally and are constantly refined through both induction of normal signals and inhibition of inappropriate signals. The connective tissue of the tongue arises from cranial neural crest cell-derived ectomesenchyme within the mandibular portion of the first pharyngeal arch and is likely to be impacted by this signaling.

View Article and Find Full Text PDF