Background: The close interaction and interdependence of astrocytes and neurons allows for the possibility that astrocyte dysfunction contributes to and amplifies neurodegenerative pathology. Molecular pathways that trigger reactive astrocytes may represent important targets to preserve normal homeostatic maintenance and modify disease progression.
Methods: Semaphorin 4D (SEMA4D) expression in the context of disease-associated neuropathology was assessed in postmortem brain sections of patients with Huntington's (HD) and Alzheimer's disease (AD), as well as in mouse models of HD (zQ175) and AD (CVN; APPSwDI/NOS2) by immunohistochemistry.
Purpose: The CLASSICAL-Lung clinical trial tested the combination of pepinemab, an IgG4 humanized mAb targeting semaphorin 4D, with the PD-L1 inhibitor avelumab to assess the effects of coupling increased T-cell infiltration and reversal of immune suppression via pepinemab with sustained T-cell activation via checkpoint inhibition.
Patients And Methods: This phase Ib/II, single-arm study was designed to evaluate the safety, tolerability, and efficacy of pepinemab in combination with avelumab in 62 patients with advanced non-small cell lung cancer (NSCLC), including immunotherapy-naïve (ION) patients and patients whose tumors progressed following anti-PD-1/L1 monotherapy (IOF). The main objectives were to evaluate safety/tolerability, establish a recommended phase 2 dose (RP2D), obtain a preliminary evaluation of antitumor activity, and investigate candidate biomarker activity.
Background: Homeostatic B Cell-Attracting chemokine 1 (BCA-1) otherwise known as CXCL13 is constitutively expressed in secondary lymphoid organs by follicular dendritic cells (FDC) and macrophages. It is the only known ligand for the CXCR5 receptor, which is expressed on mature B cells, follicular helper T cells (Tfh), Th17 cells and regulatory T (Treg) cells. Aberrant expression of CXCL13 within ectopic germinal centers has been linked to the development of autoimmune disorders (e.
View Article and Find Full Text PDFSemaphorin 4D (SEMA4D, CD100) and its receptor plexin-B1 (PLXNB1) are broadly expressed in murine and human tumors, and their expression has been shown to correlate with invasive disease in several human tumors. SEMA4D normally functions to regulate the motility and differentiation of multiple cell types, including those of the immune, vascular, and nervous systems. In the setting of cancer, SEMA4D-PLXNB1 interactions have been reported to affect vascular stabilization and transactivation of ERBB2, but effects on immune-cell trafficking in the tumor microenvironment (TME) have not been investigated.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a chronic neuroinflammatory disease characterized by immune cell infiltration of CNS, blood-brain barrier (BBB) breakdown, localized myelin destruction, and progressive neuronal degeneration. There exists a significant need to identify novel therapeutic targets and strategies that effectively and safely disrupt and even reverse disease pathophysiology. Signaling cascades initiated by semaphorin 4D (SEMA4D) induce glial activation, neuronal process collapse, inhibit migration and differentiation of oligodendrocyte precursor cells (OPCs), and disrupt endothelial tight junctions forming the BBB.
View Article and Find Full Text PDF