Publications by authors named "Crystal Loving"

The transcriptome of porcine peripheral blood mononuclear cells (PBMC) at single cell (sc) resolution is well described, but little is understood about the cis-regulatory mechanism behind scPBMC gene expression. Here, we profiled the open chromatin landscape of porcine PBMC that define cis-regulatory elements and mechanism contributing to the transcription using single nucleus ATAC sequencing (snATAC-seq). Approximately 22 % of the identified peaks overlapped with annotated transcription start sites (TSS).

View Article and Find Full Text PDF

Unlabelled: O157:H7-adulterated food products are associated with disease outbreaks in humans. Although cattle feces are a source for O157:H7 contamination, it is unclear if human-associated outbreak isolates differentially colonize and shed in the feces of cattle from that of non-outbreak isolates. It is also unclear if phenotypes, such as biofilm formation, cell attachment, or toxin production, differentiate environmental O157:H7 isolates from those associated with human illness.

View Article and Find Full Text PDF

Immune modulation in animal agriculture has been of research interest for several decades, yet only a few immunomodulators have received regulatory approval in the United States and around the world. In this review, we summarize market and regulatory environments impacting commercial development of immunomodulators for use in livestock and poultry. In the United States, very few immunomodulators have received regulatory approval for use in livestock by either the US Department of Agriculture Center for Veterinary Biologics or the Food and Drug Administration (FDA).

View Article and Find Full Text PDF

Peyer's patches (PPs) are B cell-rich sites of intestinal immune induction, yet PP-associated B cell signaling, activation, and differentiation are poorly defined. Single-cell and spatial transcriptomics were completed to study B cells from porcine jejunum and ileum containing PPs. Intestinal locations had distinct immune landscapes, including more follicular B cells in ileum and increased MHC-II-encoding gene expression in jejunal B cells.

View Article and Find Full Text PDF

Pigs play an important role in influenza A virus (IAV) epidemiology because they support replication of human, avian, and swine origin viruses and act as an IAV reservoir for pigs and other species, including humans. Moreover, novel IAVs with human pandemic potential may be generated in pigs. To minimize the threat of IAVs to human and swine health, it is crucial to understand host defense mechanisms that restrict viral replication and pathology in pigs.

View Article and Find Full Text PDF

Neutrophils are vital components of the immune system for limiting the invasion and proliferation of pathogens in the body. Surprisingly, the functional annotation of porcine neutrophils is still limited. The transcriptomic and epigenetic assessment of porcine neutrophils from healthy pigs was performed by bulk RNA sequencing and transposase accessible chromatin sequencing (ATAC-seq).

View Article and Find Full Text PDF

Background: The 2017 Veterinary Feed Directive eliminated the use of medically important antibiotics for growth promotion of food animals; thus, alternative growth promoters are highly desirable by food animal producers to enhance animal health and reduce pathogen colonization, including the human foodborne pathogen Salmonella. β(1-3)(1-6)-D-glucan (β-glucan) is a soluble fiber with prebiotic characteristics; it has been shown to modulate immune and intestinal functions that strengthen swine resistance to health challenges such as bacterial infections when supplemented in the diets of growing pigs. The current study evaluated the effects of a β-glucan product on gut microbial community structure as well as Salmonella shedding and intestinal colonization.

View Article and Find Full Text PDF

Alternatives to antibiotics to improve animal performance, limit the negative impact of infectious disease, and/or reduce colonization with foodborne pathogens is a major focus of animal agricultural research. β-glucans, a generally-recognized-as-safe (GRAS) product derived from various sources, are used in swine and can serve as both a prebiotic and/or stimulant of the immune system given the expression of β-glucan receptors on immune cells. When supplied in the diet of nursery pigs, it is unclear how dietary additives, particularly those known to modulate immune status, impact immunogenicity and efficacy of mucosal-delivered vaccines.

View Article and Find Full Text PDF

Intraepithelial lymphocytes (IELs) include T cells and innate lymphoid cells that are important mediators of intestinal immunity and barrier defense, yet most knowledge of IELs is derived from the study of humans and rodent models. Pigs are an important global food source and promising biomedical model, yet relatively little is known about IELs in the porcine intestine, especially during formative ages of intestinal development. Due to the biological significance of IELs, global importance of pig health, and potential of early life events to influence IELs, we collate current knowledge of porcine IEL functional and phenotypic maturation in the context of the developing intestinal tract and outline areas where further research is needed.

View Article and Find Full Text PDF

Intraepithelial T lymphocytes (T-IELs) are T cells located within the epithelium that provide a critical line of immune defense in the intestinal tract. In pigs, T-IEL abundances and phenotypes are used to infer putative T-IEL functions and vary by intestinal location and age, though investigations regarding porcine T-IELs are relatively limited. In this study, we expand on analyses of porcine intestinal T-IELs to include additional phenotypic designations not previously recognized in pigs.

View Article and Find Full Text PDF

Understanding regional distribution and specialization of small intestinal epithelial cells is crucial for developing methods to control appetite, stress, and nutrient uptake in swine. To establish a better understanding of specific epithelial cells found across different regions of the small intestine in pigs, we utilized single-cell RNA sequencing (scRNA-seq) to recover and analyze epithelial cells from duodenum, jejunum, and ileum. Cells identified included crypt cells, enterocytes, BEST4 enterocytes, goblet cells, and enteroendocrine (EE) cells.

View Article and Find Full Text PDF

Three experiments (EXP) were conducted to determine the effect of feed additives on performance, intestinal integrity, gastrointestinal volatile fatty acids (VFA), and energy and nutrient digestion in nonchallenged nursery pigs. In EXP 1, 480 pigs (6.36-kg body weight, BW) were placed into 96 pens with 5 pigs/pen, and allotted to 1 of 10 dietary treatments: 1) negative control containing no feed additive (NC), 2) NC + 44 mg chlortetracycline and 38.

View Article and Find Full Text PDF

Lymphocytes can heavily influence intestinal health, but resolving intestinal lymphocyte function is challenging as the intestine contains a vastly heterogeneous mixture of cells. Pigs are an advantageous biomedical model, but deeper understanding of intestinal lymphocytes is warranted to improve model utility. Twenty-six cell types were identified in the porcine ileum by single-cell RNA sequencing and further compared with cells in human and murine ileum.

View Article and Find Full Text PDF

Background: Genetics studies in the porcine immune system have enhanced selection practices for disease resistance phenotypes and increased the efficacy of porcine models in biomedical research; however limited functional annotation of the porcine immunome has hindered progress on both fronts. Among epigenetic mechanisms that regulate gene expression, DNA methylation is the most ubiquitous modification made to the DNA molecule and influences transcription factor binding as well as gene and phenotype expression. Human and mouse DNA methylation studies have improved mapping of regulatory elements in these species, but comparable studies in the pig have been limited in scope.

View Article and Find Full Text PDF

Salmonella enterica serovar I 4,[5],12:i:- is a foodborne pathogen of concern because many isolates are multidrug-resistant (resistant to ≥3 antimicrobial classes) and metal tolerant. In this study, three in-feed additives were individually tested for their ability to reduce Salmonella I 4,[5],12:i:- shedding in swine: resistant potato starch (RPS), high amylose corn starch, and a fatty acid blend, compared with a standard control diet over 21 days. Only RPS-fed pigs exhibited a reduction in Salmonella fecal shedding, different bacterial community compositions, and different cecal short chain fatty acid (SCFA) profiles relative to control animals.

View Article and Find Full Text PDF

Pigs are a valuable human biomedical model and an important protein source supporting global food security. The transcriptomes of peripheral blood immune cells in pigs were defined at the bulk cell-type and single cell levels. First, eight cell types were isolated in bulk from peripheral blood mononuclear cells (PBMCs) by cell sorting, representing Myeloid, NK cells and specific populations of T and B-cells.

View Article and Find Full Text PDF

Shiga-toxin producing Escherichia coli O157:H7 (O157)-based vaccines can provide a potential intervention strategy to limit foodborne zoonotic transmission of O157. While the peripheral antibody response to O157 vaccination has been characterized, O157-specific cellular immunity at the rectoanal junction (RAJ), a preferred site for O157 colonization, remains poorly described. Vaccine induced mucosal O157-specific antibodies likely provide some protection, cellular immune responses at the RAJ may also play a role in protection.

View Article and Find Full Text PDF

Multidrug-resistant (MDR; resistance to >3 antimicrobial classes) serovar I 4,[5],12:i:- strains were linked to a 2015 foodborne outbreak from pork. Strain USDA15WA-1, associated with the outbreak, harbors an MDR module and the metal tolerance element Genomic Island 4 (SGI-4). Characterization of SGI-4 revealed that conjugational transfer of SGI-4 resulted in the mobile genetic element (MGE) replicating as a plasmid or integrating into the chromosome.

View Article and Find Full Text PDF

Changes in chromatin structure, especially in histone modifications (HMs), linked with chromatin accessibility for transcription machinery, are considered to play significant roles in transcriptional regulation. Alveolar macrophages (AM) are important immune cells for protection against pulmonary pathogens, and must readily respond to bacteria and viruses that enter the airways. Mechanism(s) controlling AM innate response to different pathogen-associated molecular patterns (PAMPs) are not well defined in pigs.

View Article and Find Full Text PDF

Innate immunomodulation via induction of innate memory is one mechanism to alter the host's innate immune response to reduce or prevent disease. Microbial products modulate innate responses with immediate and lasting effects. Innate memory is characterized by enhanced (training) or depressed (tolerance) innate immune responses, including pro-inflammatory cytokine production, to secondary exposure following a priming event.

View Article and Find Full Text PDF

T cells resident within the intestinal epithelium play a central role in barrier integrity and provide a first line of immune defense. Intraepithelial T cells (IETs) are among the earliest immune cells to populate and protect intestinal tissues, thereby giving them an important role in shaping gut health early in life. In pigs, IETs are poorly defined, and their maturation in young pigs has not been well-studied.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is a significant problem in health care, animal health, and food safety. To limit AMR, there is a need for alternatives to antibiotics to enhance disease resistance and support judicious antibiotic usage in animals and humans. Immunomodulation is a promising strategy to enhance disease resistance without antibiotics in food animals.

View Article and Find Full Text PDF

Post-weaning diarrhea caused by enterotoxigenic (ETEC) causes significant economic losses for pig producers. This study was to test the hypotheses that an ETEC challenge disrupts intestinal microbial homeostasis and the inclusion of dietary soluble (10% sugar beet pulp) or insoluble fiber (15% corn distillers dried grains with solubles) with or without exogenous carbohydrases will protect or restore the gut microbial homeostasis in weaned pigs. Sixty crossbred piglets (6.

View Article and Find Full Text PDF

Oral antibiotics are a critical tool for fighting bacterial infections, yet their use can have negative consequences, such as the disturbance of healthy gut bacterial communities and the dissemination of antibiotic residues in feces. Altering antibiotic administration route may limit negative impacts on intestinal microbiota and reduce selective pressure for antimicrobial resistance genes (ARG) persistence and mobility. Thus, a study was performed in pigs to evaluate route of therapeutic oxytetracycline (oxytet) administration, an antibiotic commonly used in the U.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: