Ovarian cancer is difficult to diagnose in women because symptoms of the disease are often not noticed until the disease has progressed to an advanced untreatable stage. Although a serum test, CA125, is currently available to assist with monitoring treatment of ovarian cancer, this test lacks the necessary specificity and sensitivity for early detection. Therefore, better biomarkers of ovarian cancer are needed.
View Article and Find Full Text PDFBackground: Novel molecular and statistical methods are in rising demand for disease diagnosis and prognosis with the help of recent advanced biotechnology. High-resolution mass spectrometry (MS) is one of those biotechnologies that are highly promising to improve health outcome. Previous literatures have identified some proteomics biomarkers that can distinguish healthy patients from cancer patients using MS data.
View Article and Find Full Text PDFBecause the glycosylation of proteins is known to change in tumor cells during the development of breast cancer, a glycomics approach is used here to find relevant biomarkers of breast cancer. These glycosylation changes are known to correlate with increasing tumor burden and poor prognosis. Current antibody-based immunochemical tests for cancer biomarkers of ovarian (CA125), breast (CA27.
View Article and Find Full Text PDFA glycomic approach is developed to identify oligosaccharide markers for ovarian cancer by rapidly profiling globally released oligosaccharides. Glycoproteins shed by cancer cells are found in the supernatant (or conditioned media) of cultured cells. In this approach, shed glycoproteins are profiled for their oligosaccharide content using beta-elimination conditions.
View Article and Find Full Text PDFAn analytical approach using matrix-assisted laser desorption/ionization mass spectrometry for the structural characterization and assessment of the degree of polymerization of cell wall pectin-derived oligosaccharides (PDOs) in three regions of Botrytis cinerea-infected tomato fruit tissue is described. The PDOs were isolated from lesion centers (extensively macerated tissue), the area just beyond visible lesion margins, and healthy and intact tissue of an inoculated fruit, sampled at a distance from developing lesions. PDO mixtures were directly analyzed by mass spectrometry without chromatographic separation, after minimum cleanup by membrane drop dialysis.
View Article and Find Full Text PDF