Background: Cerebral Palsy (CP) is the most common physical pediatric neurodevelopmental disorder and spastic diplegic injury is its most frequent subtype. CP results in substantial neuromotor and cognitive impairments that have significant socioeconomic impact. Despite this, its underlying pathophysiological mechanisms and etiology remain incompletely understood.
View Article and Find Full Text PDFThe last decade has seen significant growth in scientific understanding and public awareness of autism. There is still a long road ahead before this awareness can be matched with parallel improvements in evidence-based practice. The process of translating evidence into community care has been hampered by the seeming disconnect between the mainstream scientific research agenda and the immediate priorities of many communities.
View Article and Find Full Text PDFSemin Pediatr Neurol
June 2013
The substantial socioeconomic burden of a diagnosis of cerebral palsy, coupled with a positive anecdotal and media spin on stem cell treatments, drives many affected families to seek information and treatment outside of the current clinical and scientific realm. Preclinical studies using several types of stem and adult cells--including mesenchymal stem cells, neural precursor cells, olfactory ensheathing glia and Schwann cells--have demonstrated some regenerative and functional efficacy in neurologic paradigms. This paper describes the most common cell types investigated for transplant in vivo and summarizes the current state of early-phase clinical trials.
View Article and Find Full Text PDFStem cell repair shows substantial translational potential for neurological injury, but the mechanisms of action remain unclear. This study aimed to investigate whether transplanted stem cells could induce comprehensive functional remyelination. Subventricular zone (SVZ)-derived adult neural precursor cells (aNPCs) were injected bilaterally into major cerebral white matter tracts of myelin-deficient shiverer mice on postnatal day (P) 0, P7, and P21.
View Article and Find Full Text PDFCerebral palsy (CP) is a chronic childhood disorder described by a group of motor and cognitive impairments and results in a substantial socio-economic burden to the individual, family, and healthcare system. With no effective biological interventions, therapies for CP are currently restricted to supportive and management strategies. Cellular transplantation has been suggested as a putative intervention for neural pathology, as mesenchymal and neural stem cells, as well as olfactory ensheathing glia and Schwann cells, have shown some regenerative and functional efficacy in experimental central nervous system disorders.
View Article and Find Full Text PDFThe human central nervous system (CNS) may be the most complex structure in the universe. Its development and appropriate specification into phenotypically and spatially distinct neural subpopulations involves a precisely orchestrated response, with thousands of transcriptional regulators combining with epigenetic controls and specific temporal cues in perfect synchrony. Understandably, our insight into the sophisticated molecular mechanisms which underlie spinal cord development are as yet limited.
View Article and Find Full Text PDFAlthough neural c-Jun is essential for successful peripheral nerve regeneration, the cellular basis of this effect and the impact of c-Jun activation are incompletely understood. In the current study, we explored the effects of neuron-selective c-Jun deletion, substitution of serine 63 and 73 phosphoacceptor sites with non-phosphorylatable alanine, and deletion of Jun N-terminal kinases 1, 2 and 3 in mouse facial nerve regeneration. Removal of the floxed c-jun gene in facial motoneurons using cre recombinase under control of a neuron-specific synapsin promoter (junΔS) abolished basal and injury-induced neuronal c-Jun immunoreactivity, as well as most of the molecular responses following facial axotomy.
View Article and Find Full Text PDFPostischemic seizures are associated with worsened outcome following stroke, but the underlying pathophysiology is poorly understood. Here we examined acute seizures in adult mice following hypoxia-ischemia (HI) via combined behavioral, electrophysiological, and histological assessments. C57BL/6 mice aged 4-9 months received a permanent occlusion of the right common carotid artery and then underwent a systemic hypoxic episode.
View Article and Find Full Text PDFCell transplantation therapy holds potential for repair and functional plasticity following spinal cord injury (SCI). Stem and progenitor cells are capable of modifying the lesion environment, providing structural support and myelination and increasing neurotrophic factors for neuroprotection and endogenous activation. Through these effects, transplanted cells induce plasticity in the injured spinal cord by promoting axonal elongation and collateral sprouting, remyelination, synapse formation and reduced retrograde axonal degeneration.
View Article and Find Full Text PDF