Publications by authors named "Crystal A Bostrom"

Mild traumatic brain injury (mTBI) is becoming recognized as a significant concern in modern society. In particular, youth is being increasingly seen as a vulnerable time period for mTBI, as this is the final developmental period for the brain and typically involves robust synaptic reorganization and axonal myelination. Another issue that is being hotly debated is whether mTBI differentially impacts the male and female brain.

View Article and Find Full Text PDF

It is known that NMDA receptors can modulate adult hippocampal neurogenesis, but the contribution of specific regulatory GluN2 subunits has been difficult to determine. Here we demonstrate that mice lacking GluN2A (formerly NR2A) do not show altered cell proliferation or neuronal differentiation, but present significant changes in neuronal morphology in dentate granule cells. Specifically, GluN2A deletion significantly decreased total dendritic length and dendritic complexity in DG neurons located in the inner granular zone.

View Article and Find Full Text PDF

Huntington's disease (HD) is a progressive and fatal neurodegenerative disorder caused by a polyglutamine expansion in the gene encoding the protein huntingtin. The disease progresses over decades, but often patients develop cognitive impairments that precede the onset of the classical motor symptoms. Similar to the disease progression in humans, the yeast artificial chromosome (YAC) 128 HD mouse model also exhibits cognitive dysfunction that precedes the onset of the neuropathological and motor impairments characteristic of HD.

View Article and Find Full Text PDF

The different secondary subunits of the N-methyl-d-aspartate (NMDA) receptor each convey unique biophysical properties to the receptor complex, and may be key in determining the functional role played by NMDA receptors. In the hippocampus, the GluN2A and GluN2B subunits are particularly abundant; however, their exact roles in synaptic plasticity and behavior remain controversial. Here, we show that mice carrying a deletion for the GluN2A subunit (GluN2A(-/-)) demonstrate a severely compromised NMDA to AMPA receptor current ratio in granule cells from the dentate gyrus (DG), while granule cell morphology is unaltered.

View Article and Find Full Text PDF