Despite the advance of knowledge about the factors and potential mechanisms triggering the ichthyotoxicity in microalgae, these remain unclear or are controversial for several species (e.g. Heterosigma).
View Article and Find Full Text PDFChilean waters are often affected by Alexandrium catenella, one of the leading organisms behind Harmful Algae Blooms (HABs). Genetic variability for this species are commonly carried out from cultured samples, approach that may not accurately quantify genetic variability of this organism in the water column. In this study, genetic variability of A.
View Article and Find Full Text PDFFish oil is used in the production of feed for cultured fish owing to its high polyunsaturated fatty acid content (PUFA). The over-exploitation of fisheries and events like "El Niño" are reducing the fish oil supply. Some marine microorganisms are considered potentially as alternative fatty acid sources.
View Article and Find Full Text PDFCancer development involves changes driven by the epigenetic machinery, including nucleosome positioning. Recently, the concept that adenoviral replication may be driven by tumor specific promoters (TSPs) gained support, and several conditionally replicative adenoviruses (CRAd) exhibited therapeutic efficacy in clinical trials. Here, we show for the first time that placing a nucleosome positioning sequence (NPS) upstream of a TSP combined with Wnt-responsive motifs (pART enhancer) enhanced the TSP transcriptional activity and increased the lytic activity of a CRAd.
View Article and Find Full Text PDFSelf-renewal of human pluripotent embryonic stem cells proceeds via an abbreviated cell cycle with a shortened G(1) phase. We examined which genes are modulated in this abbreviated period and the epigenetic mechanisms that control their expression. Accelerated upregulation of genes encoding histone proteins that support DNA replication is the most prominent gene regulatory program at the G(1)/S-phase transition in pluripotent cells.
View Article and Find Full Text PDFBackground: Increased expression of the cyclooxygenase-2 enzyme (COX2) is one of the main characteristics of gastric cancer (GC), which is a leading cause of death in the world, particularly in Asia and South America. Although the Wnt/β-catenin signaling pathway has been involved in the transcriptional activation of the COX2 gene, the precise mechanism modulating this response is still unknown.
Methodology/principal Findings: Here we studied the transcriptional regulation of the COX2 gene in GC cell lines and assessed whether this phenomenon is modulated by Wnt/β-catenin signaling.
Calcium/calmodulin-dependent protein kinase IV (CaMKIV) plays a key role in the regulation of calcium-dependent gene expression. The expression of CaMKIV and the activation of CREB regulated genes are involved in memory and neuronal survival. We report here that: (a) a bioinformatic analysis of 15,476 promoters of the human genome predicted several Wnt target genes, being CaMKIV a very interesting candidate; (b) CaMKIV promoter contains TCF/LEF transcription motifs similar to those present in Wnt target genes; (c) biochemical studies indicate that lithium and the canonical ligand Wnt-3a induce CaMKIV mRNA and protein expression levels in rat hippocampal neurons as well as CaMKIV promoter activity; (d) treatment of hippocampal neurons with Wnt-3a increases the binding of beta-catenin to the CaMKIV promoter: (e) In vivo activation of the Wnt signaling improve spatial memory impairment and restores the expression of CaMKIV in a mice double transgenic model for Alzheimer's disease which shows decreased levels of the kinase.
View Article and Find Full Text PDFThe Runx2 transcription factor is essential for skeletal development as it regulates expression of several key bone-related genes. Multiple lines of evidence indicate that expression of the Runx2/p57 isoform in osteoblasts is controlled by the distal P1 promoter. Alterations of chromatin structure are often associated with transcription and can be mediated by members of the SWI/SNF family of chromatin remodeling complexes, or by transcriptional coactivators that possess enzymatic activities that covalently modify structural components of the chromatin.
View Article and Find Full Text PDFVitamin D is a principal modulator of skeletal gene expression, thus necessitating an understanding of interfaces between the activity of this steroid hormone and regulatory cascades that are functionally linked to the regulation of skeletal genes. Physiologic responsiveness requires combinatorial control, whereas co-regulatory proteins determine the specificity of biologic responsiveness to physiologic cues. It is becoming increasingly evident that regulatory complexes containing the vitamin D receptor are dynamic rather than static.
View Article and Find Full Text PDFChromatin organization within the nuclear compartment is a fundamental mechanism to regulate the expression of eukaryotic genes. During the last decade, a number of nuclear protein complexes with the ability to remodel chromatin and regulate gene transcription have been reported. Among these complexes is the SWI/SNF family, which alters chromatin structure in an ATP-dependent manner.
View Article and Find Full Text PDFVitamin D serves as a principal modulator of skeletal gene transcription, thus necessitating an understanding of interfaces between the activity of this steroid hormone and regulatory cascades that are functionally linked to the regulation of skeletal genes. Physiological responsiveness requires combinatorial control where coregulatory proteins determine the specificity of biological responsiveness to physiological cues. It is becoming increasingly evident that the regulatory complexes containing the vitamin D receptor are dynamic rather than static.
View Article and Find Full Text PDFTissue-specific activation of the osteocalcin (OC) gene is associated with changes in chromatin structure at the promoter region. Two nuclease-hypersensitive sites span the key regulatory elements that control basal tissue-specific and vitamin D3-enhanced OC gene transcription. To gain understanding of the molecular mechanisms involved in chromatin remodeling of the OC gene, we have examined the requirement for SWI/SNF activity.
View Article and Find Full Text PDFBone-specific transcription of the osteocalcin (OC) gene is regulated principally by the Runx2 transcription factor and is further stimulated in response to 1alpha,25-dihydroxyvitamin D3 via its specific receptor (VDR). The rat OC gene promoter contains three recognition sites for Runx2 (sites A, B, and C). Mutation of sites A and B, which flank the 1alpha,25-dihydroxyvitamin D3-responsive element (VDRE), abolishes 1alpha,25-dihydroxyvitamin D3-dependent enhancement of OC transcription, indicating a tight functional relationship between the VDR and Runx2 factors.
View Article and Find Full Text PDFBone-specific transcription of the osteocalcin (OC) gene is principally regulated by the Runx2 transcription factor and further stimulated in response to 1alpha,25-dihydroxy Vitamin D3 via its specific receptor (VDR). The rat OC gene promoter contains three recognition sites for Runx2 (sites A-C). Mutation of sites A and B, which flank the 1alpha,25-dihydroxy Vitamin D3-responsive element (VDRE), abolishes 1alpha,25-dihydroxy Vitamin D3-dependent enhancement of OC transcription, indicating a tight functional relationship between VDR and Runx2 factors.
View Article and Find Full Text PDFp300 is a multifunctional transcriptional coactivator that serves as an adapter for several transcription factors including nuclear steroid hormone receptors. p300 possesses an intrinsic histone acetyltransferase (HAT) activity that may be critical for promoting steroid-dependent transcriptional activation. In osteoblastic cells, transcription of the bone-specific osteocalcin (OC) gene is principally regulated by the Runx2/Cbfa1 transcription factor and is stimulated in response to vitamin D(3) via the vitamin D(3) receptor complex.
View Article and Find Full Text PDF