Publications by authors named "Cruijsen P"

Globally, peatlands have been affected by drainage and peat extraction, with adverse effects on their functioning and services. To restore peat-forming vegetation, drained bogs are being rewetted on a large scale. Although this practice results in higher groundwater levels, unfortunately it often creates deep lakes in parts where peat was extracted to greater depths than the surroundings.

View Article and Find Full Text PDF

We showed the presence of glucocorticoid (GR) and mineralocorticoid (MR) receptors in different populations of Xenopus laevis melanotrope cells and revealed their downregulation (MR) and upregulation (GR) during dark background adaptation. Corticosterone did not affect short-term intracellular calcium dynamics and alpha-melanophore-stimulating hormone secretion, suggesting a role for GR and MR in long-term processes in the melanotropes.

View Article and Find Full Text PDF

The extracellular calcium-sensing receptor (CaR) is expressed in various types of endocrine pituitary cell, but the intracellular mechanism this G protein-coupled receptor uses in these cells is not known. In the present study we investigated possible intracellular signal transduction pathway(s) utilized by the CaR of the endocrine melanotrope cells in the intermediate pituitary lobe of the South African-clawed toad Xenopus laevis. For this purpose, the effects of various pharmacological agents on CaR-evoked secretion of radiolabeled secretory peptides from cultured melanotrope cells were assessed.

View Article and Find Full Text PDF

The neuropeptides, pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are implicated in the regulation of gene expression and hormone secretion in mammalian melanotrope cells and a mammalian pro-opiomelanocortin (POMC)-producing tumor cell line, but the physiological relevance of this regulation is elusive. The purpose of the present study was to establish if these peptides affect biosynthetic and secretory processes in a well-established physiological model for endocrine cell functioning, the pituitary melanotrope cells of the amphibian Xenopus laevis, which hormonally control the process of skin color adaptation to background illumination. We show that both PACAP and VIP are capable of stimulating the secretory process of the Xenopus melanotrope cell.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, occurs abundantly in the brain, where it exerts a variety of neural functions. We previously demonstrated that BDNF also exists in the endocrine melanotroph cells in the intermediate lobe of the pituitary gland of the amphibian Xenopus laevis, suggesting that BDNF, in addition to its neural actions within the brain, can act as a hormone. In the present study, we tested whether BDNF, in addition to its neural and hormonal roles, can be released as a neurohormone from the neural pituitary lobe of X.

View Article and Find Full Text PDF

It is well-known that alpha-melanophore-stimulating hormone (alpha-MSH) release from the amphibian pars intermedia (PI) depends on the light condition of the animal's background, permitting the animal to adapt the colour of its skin to background light intensity. In the present study, we carried out nine experiments on the effect of low temperature on this skin adaptation process in the toad Xenopus laevis, using the skin melanophore index (MI) bioassay and a radioimmunoassay to measure skin colour adaptation and alpha-MSH secretion, respectively. We show that temperatures below 8 degrees C stimulate alpha-MSH secretion and skin darkening, with a maximum at 5 degrees C, independent of the illumination state of the background.

View Article and Find Full Text PDF

Light and temperature stimuli act via various brain centers and neurochemical messengers on the pituitary melanotrope cells of Xenopus laevis to control distinct subcellular activities such as the biosynthesis, processing, and release of alpha-melanophore-stimulating hormone (alphaMSH). The melanotrope signal transduction involves the action of a large repertoire of neurotransmitter and neuropeptide receptors and the second messengers cAMP and Ca(2+). Here we briefly review this signaling mechanism and then present new data on two aspects of this process, viz.

View Article and Find Full Text PDF

We have investigated the physiological regulation and functional significance of brain-derived neurotrophic factor (BDNF) in the endocrine melanotrope cells of the pituitary pars intermedia of the amphibian Xenopus laevis, which can adapt its skin color to the light intensity of its environment. In black-adapted animals, melanotrope cells produce and release alpha-melanophore-stimulating hormone (alpha-MSH). In white-adapted animals, the activity of melanotrope cells is inhibited by neuronal input.

View Article and Find Full Text PDF

The pituitary melanotrope cell of Xenopus laevis displays cytosolic Ca2+ oscillations that arise for the interplay between the burst-like openings of voltage-operated Ca2+ channels and Ca2+-extrusion mechanisms. We have previously shown that Ca2+-extrusion rates increase with increases in [Ca2+]i, suggesting that Ca2+ itself plays a role in shaping the Ca2+ oscillations. The purpose of the present study was to test this hypothesis by manipulating the intracellular Ca2+ buffering capacity of the cell and determining the consequences of such manipulations for the shape of the Ca2+ oscillations.

View Article and Find Full Text PDF

At this point three brain centres are thought to be involved in the regulation of the melanotrope cells of the pituitary pars intermedia of Xenopus laevis: the magnocellular nucleus, the suprachiasmatic nucleus and the locus coeruleus. This study aims to investigate the existence of a fourth, serotonergic, centre controlling the melanotrope cells. In-vitro superfusion studies show that serotonin has a dose-dependent stimulatory effect on peptide release (1.

View Article and Find Full Text PDF

In the South African clawed toad Xenopus laevis, background adaptation is regulated by alpha MSH, a POMC-derived peptide. After transfer of the animal from a black to a white background, secretion of alpha MSH from the intermediate pituitary lobe is inhibited by the hypothalamic neurotransmitter neuropeptide Y (NPY). The neurointermediate lobe in vitro is also subject to inhibitory regulation by dopamine and gamma-aminobutyric acid (GABA).

View Article and Find Full Text PDF

The present study examined inositol phosphate metabolism in melanotrope cells of Xenopus laevis to determine if inositol phosphates are involved in regulating the biosynthetic or secretory activity of these cells. No correlation could be found between inositol phosphate metabolism and the secretory activity of the melanotrope cells. Therefore, we conclude that inositol phosphate production is not directly involved in the regulation of release of alpha-MSH from these cells.

View Article and Find Full Text PDF

The melanotrope cells in the pars intermedia in the pituitary of Xenopus laevis synthesize and release the melanophore-stimulating hormone (alpha MSH), a small peptide that causes skin darkening during the process of background adaptation. Evidence has been found for a heterogeneity in biosynthetic activity of the melanotrope cells. In the present study two questions were addressed: (1) does the melanotrope cell population also show heterogeneous alpha MSH-release, and (2) can this heterogeneity be changed by extracellular messengers? Since dopamine is known to inhibit alpha MSH-release, this messenger is used to study the regulation of the heterogeneity.

View Article and Find Full Text PDF

It has previously been established that neuropeptide-Y (NPY) is a potent inhibitor of alpha MSH release from the pars intermedia of the amphibian Xenopus laevis. The location of binding sites for NPY in the pars intermedia of the pituitary has now been studied with light microscopic autoradiography, using a dispersed cell labeling method with the specific NPY receptor ligand [125I]Bolton-Hunter NPY. The majority of radioactive labeling was associated with folliculo-stellate cells; the percentage of labeling as well as the mean number of grains were approximately 5 times higher for folliculo-stellate cells than for melanotropes.

View Article and Find Full Text PDF

The pars intermedia of the pituitary gland in Xenopus laevis secretes alpha-melanophore-stimulating hormone (alpha-MSH), which causes dispersion of pigment in dermal melanophores in animals on a black background. In the present study we have determined plasma levels of alpha-MSH in animals undergoing adaptation to white and black backgrounds. Plasma values of black-adapted animals were high and decreased rapidly after transfer to a white background, as did the degree of pigment dispersion in dermal melanophores.

View Article and Find Full Text PDF

Immunocytochemical studies showed the presence of a fiber system containing a CRF-like peptide in the median eminence and in the neural lobe of the pituitary gland of Xenopus laevis. During in vitro superfusion of neurointermediate lobe tissue, CRF, sauvagine and urotensin I induced a rapid and dose-dependent stimulation of secretion of MSH and endorphin. Tissue of white-background adapted animals displayed a remarkably higher sensitivity to CRF and sauvagine than tissue from animals that were adapted to a black background.

View Article and Find Full Text PDF