Publications by authors named "Cruciani V"

Purpose: Initially, prostate cancer responds to hormone therapy, but eventually resistance develops. Beta emitter-based prostate-specific membrane antigen (PSMA)-targeted radionuclide therapy is approved for the treatment of metastatic castration-resistant prostate cancer. Here we introduce a targeted alpha therapy (TAT) consisting of the PSMA antibody pelgifatamab covalently linked to a macropa chelator and labeled with actinium-225 and compare its efficacy and tolerability with other TATs.

View Article and Find Full Text PDF

Human epidermal growth factor receptor 2 (HER2) is overexpressed in 15-30% of breast cancers but has low expression in normal tissue, making it attractive for targeted alpha therapy (TAT). HER2-positive breast cancer typically metastasizes to bone, resulting in incurable disease and significant morbidity and mortality. Therefore, new strategies for HER2-targeting therapy are needed.

View Article and Find Full Text PDF

Targeted thorium-227 conjugates comprise the combination of a monoclonal antibody with specificity for a tumor cell antigen and a 3,2-HOPO chelator enabling complexation of thorium-227 (Th-227). The radiolabeled conjugate functions as an effective delivery system of alpha-particle radiation to the surface of the tumor cell inducing difficult to repair complex DNA damage and cell death. In addition, the mechanism of action of targeted alpha therapy (TAT) appears to involve a significant component linked to stimulation of the immune system.

View Article and Find Full Text PDF

Background: Targeted thorium-227 conjugates (TTCs) are an emerging class of targeted alpha therapies (TATs). Their unique mode of action (MoA) is the induction of difficult-to-repair clustered DNA double-strand breaks. However, thus far, their effects on the immune system are largely unknown.

View Article and Find Full Text PDF

Targeted thorium-227 conjugates (TTCs) represent a novel class of therapeutic radiopharmaceuticals for the treatment of cancer. TTCs consist of the alpha particle emitter thorium-227 complexed to a 3,2-hydroxypyridinone chelator conjugated to a tumor-targeting monoclonal antibody. The high energy and short range of the alpha particles induce potent and selective anti-tumor activity driven by the induction of DNA damage in the target cell.

View Article and Find Full Text PDF

Monogonont rotifers constitute, depending on the moment of the year, most of the zooplankton in many freshwater ecosystems. Sexual reproduction is essential in the development cycle of these organisms as it enables them to constitute stocks of cysts which can withstand adverse environmental conditions and hatch when favorable conditions return. However, endocrine disrupting compounds (EDCs) can interfere with the reproduction of organisms.

View Article and Find Full Text PDF

Purpose: Targeted thorium-227 conjugates (TTC) represent a new class of molecules for targeted alpha therapy (TAT). Covalent attachment of a 3,2-HOPO chelator to an antibody enables specific complexation and delivery of the alpha particle emitter thorium-227 to tumor cells. Because of the high energy and short penetration range, TAT efficiently induces double-strand DNA breaks (DSB) preferentially in the tumor cell with limited damage to the surrounding tissue.

View Article and Find Full Text PDF
Article Synopsis
  • Targeted Th conjugates (TTCs) are a novel class of radiopharmaceuticals that utilize α-emitters linked to tumor-targeting antibodies to produce localized DNA damage in cancer cells, enhancing antitumor effects.
  • By inhibiting the DNA damage response (DDR) pathway, researchers aim to further sensitize cancer cells to TTCs, leading to increased treatment effectiveness.
  • In vitro and in vivo studies show that combining MSLN-TTC with various DDR inhibitors, particularly ATR and PARP inhibitors, leads to significant synergistic anticancer effects, supporting their potential use in targeted cancer therapies.
View Article and Find Full Text PDF

Phthalate esters are widespread contaminants that can cause endocrine disruption in vertebrates. Studies showed that molecules with hormonal activities in vertebrates and invertebrates can affect asexual and sexual reproduction in rotifers. We investigated the impact of di-hexylethyl phthalate (DEHP), di-butyl phthalate (DBP) and butylbenzyl phthalate (BBP), on the asexual and sexual reproduction of the freshwater monogonont rotifer Brachionus calyciflorus in order to determine a potential environmental risk for sexual reproduction.

View Article and Find Full Text PDF

Objective: To analyze our five-year experience with a telephone helpline service for patients suffering from chronic rheumatic diseases and provide the patients' perspective derived from a dedicated survey.

Methods: A telephone service (contact center) was set up in the rheumatology unit at Sapienza University of Rome, Italy, in September 2007. It is managed by operators from a medical service society who collect the patients'calls.

View Article and Find Full Text PDF

Aim: Gap junction intercellular communication (GJIC) and hemichannel permeability may have important roles during an ischemic insult. Our aim was to evaluate the effect of ischemia on gap junction channels and hemichannels.

Methods: We used neonatal rat heart myofibroblasts and simulated ischemia with a HEPES buffer with high potassium, low pH, absence of glucose, and oxygen tension was reduced by dithionite.

View Article and Find Full Text PDF

Mass spectrometric analyses of peptides mainly rely on cleavage of proteins with proteases that have a defined specificity. The specificities of the proteases imply that there is not a random distribution of amino acids in the peptides. The physico-chemical effects of this distribution have been partly analyzed for tryptic peptides, but to a lesser degree for other proteases.

View Article and Find Full Text PDF

We suggest an extension of connexin orthology relationships across the major vertebrate lineages. We first show that the conserved domains of mammalian connexins (encoding the N-terminus, four transmembrane domains and two extracellular loops) are subjected to a considerably more strict selection pressure than the full-length sequences or the variable domains (the intracellular loop and C-terminal tail). Therefore, the conserved domains are more useful for the study of family relationships over larger evolutionary distances.

View Article and Find Full Text PDF

Connexins are chordate-specific transmembrane proteins that can form gap junctional channels between adjacent cells. With the progress in vertebrate genome sequencing, it is now possible to reconstruct the main lines in the evolution of the connexin family from fishes to mammals. Four connexin groups are only found in fishes.

View Article and Find Full Text PDF

The open reading frames of 17 connexins from Syrian hamster (using tissues) and 16 connexins from the Chinese hamster cell line V79, were fully (Cx30, Cx31, Cx37, Cx43 and Cx45) or partially sequenced. We have also detected, and partially sequenced, seven rat connexins that previously were unavailable. The expression of connexin genes was examined in some hamster organs and cultured hamster cells, and compared with wild-type mouse and the cancer-prone Min mouse.

View Article and Find Full Text PDF

Unannotated mammalian genome databases (dog, cow, opossum) were searched for candidate connexin genes, using sequences from annotated genomes (man, mouse). All 18 'multi-species' connexin genes, i.e.

View Article and Find Full Text PDF

The expression of gap junction proteins, connexins, in the intestine and their role in tumorigenesis are poorly characterised. Truncating mutations in the tumour suppressor gene adenomatous polyposis coli (APC) are early and important events, both in inheritable (familial adenomatous polyposis, FAP) and spontaneous forms of intestinal cancer. Multiple intestinal neoplasia (Min) mice, a FAP model with inherited heterozygous mutation in Apc, spontaneously develop numerous intestinal adenomas.

View Article and Find Full Text PDF

The phorbol ester, phorbol-12-myristate-13-acetate (PMA), an activator of PKCs, is known to stimulate the in vitro growth of monolayer cultures of normal human melanocytes whereas it inhibits the growth of most malignant melanoma cell lines. We examined the effect of PMA on proliferation and survival of melanoma cells grown as multicellular aggregates in suspension (spheroids), and aimed to elucidate downstream targets of PKC signaling. In contrast to monolayer cultures, PMA increased cell proliferation as well as protected melanoma cells from suspension-mediated apoptosis (anoikis).

View Article and Find Full Text PDF

Ilimaquinone (IQ) and brefeldin A (BFA) disrupt the Golgi complex structure and block protein transport to the plasma membrane, and inhibit gap junctional communication. HeLa cells expressing rat connexin26, 32, or 43, or mouse connexin31, 36, 45, or 57, were used to study the response patterns of gap junctional communication (dye transfer) to ilimaquinone, brefeldin, and the potent protein kinase C (PKC) activator 12-O-tetradecanoylphorbol-13-acetate (TPA). 12-O-Tetradecanoylphorbol-13-acetate (followed for 2 h) caused dose- and time-dependent decreases in communication for five of seven connexins, the unresponsive being connexin45 and 57.

View Article and Find Full Text PDF

Heterozygous mutations in adenomatous polyposis coli (APC) is an early event in inheritable and sporadic colon cancer development. We recently found reduced connexin (Cx43) expression in intestinal cell lines with heterozygous Apc mutation. In this study we investigated Cx expression and the role of one mutated Apc allele in epithelia of multiple intestinal neoplasia (Min) mouse intestines by immunohistochemistry.

View Article and Find Full Text PDF

Reversible down-regulation of gap junctional intercellular communication (GJIC) is proposed to be an important cellular mechanism in tumor promotion. Gap junction function is modified by a variety of tumor promoters, including the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). Treatment of cells with TPA results in the activation and subsequent depletion of the TPA-responsive protein kinase C (PKC) isoforms.

View Article and Find Full Text PDF

Brefeldin A and ilimaquinone are compounds known to affect Golgi structure and function. In particular, the transport of proteins is blocked either at the level of exit from endoplasmic reticulum (brefeldin) or at cis-Golgi (ilimaquinone). Brefeldin caused a slow decrease in gap-junctional communication and a slow loss of all phosphorylated forms of connexin43 in hamster and rat fibroblasts, while ilimaquinone caused an abrupt decrease in gap-junctional communication and rapid loss of only the slowest migrating phosphorylated connexin43 band (P2).

View Article and Find Full Text PDF

Mutations in the tumour suppressor gene adenomatous polyposis coli (Apc) are early and critical events in the development of colon cancer. In the absence of functional Apc, beta-catenin is not degraded in the cytoplasm and can be transported to the nucleus and turn on transcription of several genes, including the gap junction protein connexin43. Apc also stabilizes microtubules and regulates microtubule polymerization.

View Article and Find Full Text PDF

A number of kinases and signal transduction pathways are known to affect gap junctional intercellular communication and/or phosphorylation of connexins. Most of the information is available for protein kinase A, protein kinase C, mitogen-activated protein kinase, and the tyrosine kinase Src. Much less is known for protein kinase G, Ca(2+)-calmodulin dependent protein kinase, and casein kinase.

View Article and Find Full Text PDF