Publications by authors named "Crucian B"

Many biological markers of normal and disease states can be detected in saliva. The benefits of saliva collection for research include being non-invasive, ease of frequent sample collection, saving time, and being cost-effective. A small volume (≈1 mL) of saliva is enough for these analyses that can be collected in just a few minutes.

View Article and Find Full Text PDF

Human exploration of the solar system will expose crew members to galactic cosmic radiation (GCR), with a potential for adverse health effects. GCR particles (protons and ions) move at nearly the speed of light and easily penetrate space station walls, as well as the human body. Previously, we have shown reactivation of latent herpesviruses, including herpes simplex virus, Varicella zoster virus, Epstein-Barr virus, and cytomegalovirus (CMV), during stays at the International Space Station.

View Article and Find Full Text PDF

Spaceflight poses a myriad of environmental stressors to astronauts´ physiology including microgravity and radiation. The individual impacts of microgravity and radiation on the immune system have been extensively investigated, though a comprehensive review on their combined effects on immune system outcomes is missing. Therefore, this review aims at understanding the synergistic, additive, and antagonistic interactions between microgravity and radiation and their impact on immune function as observed during spaceflight-analog studies such as rodent hindlimb unloading and cell culture rotating wall vessel models.

View Article and Find Full Text PDF
Article Synopsis
  • Spaceflight triggers an immune response in astronauts, which was analyzed during the SpaceX Inspiration4 mission using various data types, including single-cell and biochemical analysis.
  • Researchers identified a "spaceflight signature" in gene expression linked to processes like oxidative phosphorylation, immune function, and inflammation, found across multiple datasets.
  • Key findings include up-regulation of specific immune markers in T cells, long-term suppression of certain MHC class I genes, and changes in infection-related immune pathways due to shifts in the microbiome.
View Article and Find Full Text PDF

Spaceflight induces molecular, cellular and physiological shifts in astronauts and poses myriad biomedical challenges to the human body, which are becoming increasingly relevant as more humans venture into space. Yet current frameworks for aerospace medicine are nascent and lag far behind advancements in precision medicine on Earth, underscoring the need for rapid development of space medicine databases, tools and protocols. Here we present the Space Omics and Medical Atlas (SOMA), an integrated data and sample repository for clinical, cellular and multi-omic research profiles from a diverse range of missions, including the NASA Twins Study, JAXA CFE study, SpaceX Inspiration4 crew, Axiom and Polaris.

View Article and Find Full Text PDF

A case report detailing, for the first time, a case of laboratory-confirmed zoster in an astronaut on board the International Space Station is presented. The findings of reduced T-cell function, cytokine imbalance, and increased stress hormones which preceded the event are detailed. Relevance for deep space countermeasures is discussed.

View Article and Find Full Text PDF

Real-time lab analysis is needed to support clinical decision making and research on human missions to the Moon and Mars. Powerful laboratory instruments, such as flow cytometers, are generally too cumbersome for spaceflight. Here, we show that scant test samples can be measured in microgravity, by a trained astronaut, using a miniature cytometry-based analyzer, the rHEALTH ONE, modified specifically for spaceflight.

View Article and Find Full Text PDF

Long-term space missions trigger a prolonged neuroendocrine stress response leading to immune system dysregulation evidenced by susceptibility to infections, viral reactivation, and skin irritations. However, due to existing technical constraints, real-time functional immune assessments are not currently available to crew inflight. The cytokine release assay (CRA) has been effectively employed to study the stimulated cytokine response of immune cells in whole blood albeit limited to pre- and post-flight sessions.

View Article and Find Full Text PDF

Astronauts are known to exhibit a variety of immunological alterations during spaceflight including changes in leukocyte distribution and plasma cytokine concentrations, a reduction in T-cell function, and subclinical reactivation of latent herpesviruses. These alterations are most likely due to mission-associated stressors including circadian misalignment, microgravity, isolation, altered nutrition, and increased exposure to cosmic radiation. Some of these stressors may also occur in terrestrial situations.

View Article and Find Full Text PDF

The mechanisms of particle-induced pathogenesis in the lung remain poorly understood. Neutrophilic inflammation and oxidative stress in the lung are hallmarks of toxicity. Some investigators have postulated that oxidative stress from particle surface reactive oxygen species (psROS) on the dust produces the toxicopathology in the lungs of dust-exposed animals.

View Article and Find Full Text PDF

From the early days of spaceflight to current missions, astronauts continue to be exposed to multiple hazards that affect human health, including low gravity, high radiation, isolation during long-duration missions, a closed environment and distance from Earth. Their effects can lead to adverse physiological changes and necessitate countermeasure development and/or longitudinal monitoring. A time-resolved analysis of biological signals can detect and better characterize potential adverse events during spaceflight, ideally preventing them and maintaining astronauts' wellness.

View Article and Find Full Text PDF
Article Synopsis
  • Astronauts face various health hazards in space, such as low gravity, high radiation, and isolation, which can lead to serious physiological changes.
  • A detailed analysis of biological signals from 27 astronauts helps identify and characterize these health issues during long-duration missions, potentially allowing for preventative measures.
  • Key findings show that spaceflight affects individual astronauts' physiology, influencing bone resorption, kidney function, and immune system regulation.
View Article and Find Full Text PDF

Urine, humidity condensate, and other sources of non-potable water are processed onboard the International Space Station (ISS) by the Water Recovery System (WRS) yielding potable water. While some means of microbial control are in place, including a phosphoric acid/hexavalent chromium urine pretreatment solution, many areas within the WRS are not available for routine microbial monitoring. Due to refurbishment needs, two flex lines from the Urine Processor Assembly (UPA) within the WRS were removed and returned to Earth.

View Article and Find Full Text PDF

Isolation is stressful and negatively affects sleep and mood and might also affect the structure and function of the brain. Physical exercise improves brain function. We investigated the influence of physical exercise during isolation on sleep, affect, and neurobehavioral function.

View Article and Find Full Text PDF

The field of human space travel is in the midst of a dramatic revolution. Upcoming missions are looking to push the boundaries of space travel, with plans to travel for longer distances and durations than ever before. Both the National Aeronautics and Space Administration (NASA) and several commercial space companies (e.

View Article and Find Full Text PDF

Purpose: Initial military training (IMT) is a transitionary period wherein immune function may be suppressed and infection risk heightened due to physical and psychological stress, communal living, and sleep deprivation. This study characterized changes in biomarkers of innate and adaptive immune function, and potential modulators of those changes, in military recruits during IMT.

Methods: Peripheral leukocyte distribution and mitogen-stimulated cytokine profiles were measured in fasted blood samples, Epstein-Barr (EBV), varicella zoster (VZV), and herpes simplex 1 (HSV1) DNA was measured in saliva by quantitative polymerase chain reaction as an indicator of latent herpesvirus reactivation, and diet quality was determined using the healthy eating index measured by food frequency questionnaire in 61 US Army recruits (97% male) at the beginning (PRE) and end (POST) of 22-wk IMT.

View Article and Find Full Text PDF

Long-duration spaceflight impacts human physiology, including well documented immune system dysregulation. The space food system has the potential to serve as a countermeasure to maladaptive physiological changes during spaceflight. However, the relationship between dietary requirements, the food system, and spaceflight adaptation requires further investigation to adequately define countermeasures and prioritize resources on future spaceflight missions.

View Article and Find Full Text PDF

We encountered two cases of varicella occurring in newborn infants. Because the time between birth and the onset of the illness was much shorter than the varicella incubation period, the cases suggested that the infection was maternally acquired, despite the fact that neither mother experienced clinical zoster. Thus, we tested the hypothesis that VZV frequently reactivates asymptomatically in late pregnancy.

View Article and Find Full Text PDF

Background: We have previously shown that the anti-tumor activity of human lymphocytes is diminished after 12-hours pre-exposure to simulated microgravity (SMG). Here we used an immunocompromised mouse model to determine if this loss of function would extend , and to also test the efficacy of IL-2 and zoledronic acid (ZOL) therapy as a potential countermeasure against SMG-induced immune dysfunction. We adoptively transferred human lymphocytes that were exposed to either SMG or 1G-control into NSG-Tg (Hu-IL15) mice 1-week after they were injected with a luciferase-tagged human chronic myeloid leukemia (K562) cell line.

View Article and Find Full Text PDF

The effect of confined and isolated experience on astronauts' health is an important factor to consider for future space exploration missions. The more confined and isolated humans are, the more likely they are to develop negative behavioral or cognitive conditions such as a mood decline, sleep disorder, depression, fatigue and/or physiological problems associated with chronic stress. Molecular mediators of chronic stress, such as cytokines, stress hormones or reactive oxygen species (ROS) are known to induce cellular damage including damage to the DNA.

View Article and Find Full Text PDF

Human alpha herpesviruses herpes simplex virus (HSV-1) and varicella zoster virus (VZV) establish latency in various cranial nerve ganglia and often reactivate in response to stress-associated immune system dysregulation. Reactivation of Epstein Barr virus (EBV), VZV, HSV-1, and cytomegalovirus (CMV) is typically asymptomatic during spaceflight, though live/infectious virus has been recovered and the shedding rate increases with mission duration. The risk of clinical disease, therefore, may increase for astronauts assigned to extended missions (>180 days).

View Article and Find Full Text PDF

(1) Background: After spending a year wintering in Antarctica, individual expedition members have reported increased or even new allergic reactions to environmental allergens after their return. (2) Methods: Blood samples from five overwintering crews were analyzed using the chip based multiplex ALEX Allergy Explorer (MacroArray Diagnostics GmbH, Austria). (3) Results: About one third of the 39 participants displayed specific IgEs against pollen.

View Article and Find Full Text PDF

During long duration orbital space missions, astronauts experience immune system dysregulation, the persistent reactivation of latent herpesviruses, and some degree of clinical incidence. During planned NASA 'Artemis' deep space missions the stressors that cause this phenomenon will increase, while clinical care capability will likely be reduced. There is currently minimal clinical laboratory capability aboard the International Space Station (ISS).

View Article and Find Full Text PDF